精英家教网 > 高中数学 > 题目详情
12.已知某三棱锥的三视图如图所示,则该三棱锥的体积为8,最长棱的棱长为2$\sqrt{10}$.

分析 根据几何体的三视图,得出该几何体是侧面垂直于底面的三棱锥,画出图形,结合图形求出它的体积与最长的棱长即可.

解答 解:根据几何体的三视图,得;
该几何体是侧面PAB⊥底面ABC的三棱锥,如图所示;
过点P作PO⊥AB,垂足为O,
则PO=4,
三棱锥P-ABC的体积为$\frac{1}{3}$×$\frac{1}{2}$×6×2×4=8;
三棱锥P-ABC的各条棱长为AB=6,BC=2,AC=$\sqrt{{6}^{2}{+2}^{2}}$=2$\sqrt{10}$,
PA=$\sqrt{{4}^{2}{+2}^{2}}$=2$\sqrt{5}$,PB=$\sqrt{{4}^{2}{+4}^{2}}$=4$\sqrt{2}$,PC=$\sqrt{{2}^{2}{+(4\sqrt{2})}^{2}}$=6;
所以最长的棱是AC=2$\sqrt{10}$.
故答案为:8,$2\sqrt{10}$

点评 本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是π,若其图象向右平移$\frac{π}{6}$个单位,得到的函数为偶函数,则函数f(x)的图象(  )
A.关于直线x=$\frac{5π}{12}$对称B.关于点($\frac{7π}{12}$,0)对称
C.关于点($\frac{5π}{12}$,0)对称D.关于直线x=$\frac{π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若多项式${x^3}+{x^{10}}={a_0}+{a_1}({x+1})+…+{a_9}{({x+1})^9}+{a_{10}}{({x+1})^{10}}$,则a9=-10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数$f(x)=\left\{{\begin{array}{l}\begin{array}{l}{x^2}+2x-5,x>0\\ a,x=0\end{array}\\{g(x),\;\;x<0\;\;\;\;\;\;\;\;}\end{array}}\right.$为奇函数,则a=0,f(g(-1))=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,设向量$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,x,y∈R,若|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=1,则x+2y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以下叙述中正确的个数为(  )
①为了了解高二年级605名学生的数学学习情况,打算从中抽取一个容量为30的样本,考虑用系统抽样,则分段的间隔为30;
②方程2x2-3x+1=0的两个根可以分别作为椭圆与双曲线的离心率;
③空间直角坐标系中,点A(2,-1,1)关于原点O的对称点是点B(-2,1,1).
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将样本数据按某标准分组,并制成频率分布直方图,已知样本数据在其中一组[m,n)中的频率为p,且该组在频率分布直方图上的高为h,则|m-n|等于(  )
A.$\frac{p}{h}$B.$\frac{h}{p}$C.phD.与h,p无关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知sinα-cosα=-$\frac{\sqrt{5}}{2}$,则tanα+$\frac{1}{tanα}$的值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A、B、C三点不共线,且$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+2$\overrightarrow{AC}$,则$\frac{{S}_{△ABD}}{{S}_{△ACD}}$=(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.6D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案