精英家教网 > 高中数学 > 题目详情

【题目】为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游3名,其中高级导游1名.从这6名导游中随机选择2人 参加比赛.

(Ⅰ)求选出的2人都是高级导游的概率;

(Ⅱ)为了进一步了解各旅游协会每年对本地经济收入的贡献情况,经多次统计得到,甲旅游协会对本地经济收入的贡献范围是(单位:万元),乙旅游协会对本地经济收入的贡献范围是(单位:万元),求甲旅游协会对本地经济收入的贡献不低于乙旅游协会对本地经济收入的贡献的概率.

【答案】(1) 选出的人都是高级导游的概率为 ;(2) .

【解析】试题分析:(1)利用穷举法,得;(2)由题意,本题是面积型几何概型,解得.

试题解析:

(Ⅰ)设来自甲旅游协会的名导游为,其中为高级导游,

来自乙旅游协会的名导游为,其中为高级导游,

从这名导游中随机选择人参加比赛,有下列基本情况:;

; ; ;种,

其中选出的人都是高级导游的有 ,共

所以选出的人都是高级导游的概率为 .

(Ⅱ)依题意,设甲旅游协会对本地经济收入的贡献为(单位:万元),

乙旅游协会对本地经济收入的贡献为(单位:万元),则

若甲旅游协会对本地经济收入的贡献不低于乙旅游协会对本地经济收入的贡献,

,属于几何概型问题

作图,由图可知

所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)试讨论函数的单调性及最值;

(2)若函数不存在零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求证:函数有唯一零点;

(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,曲线在点处的切线与直线垂直.

(1)求的值;

(2)若对于任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游5名,其中高级导游3名.从这8名导游中随机选择4人 参加比赛.

(Ⅰ)设为事件“选出的4人中恰有2名高级导游,且这2名高级导游来自同一个旅游协会”,求事件发生的概率.

(Ⅱ)设为选出的4人中高级导游的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)经过椭圆的右焦点的直线与椭圆交于两点,分别为椭圆的左、右顶点,记的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·石家庄一检]已知函数

(1)若,求函数的图像在点处的切线方程;

(2)若函数有两个极值点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,是所有位二进制数构成的集合,对于表示对应位置上数字不同的位置个数.例如当,当.

(1)令,求所有满足,且的个数;

(2)给定,对于集合中的所有,求的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

同步练习册答案