·ÖÎö £¨1£©Í¨¹ýÀëÐÄÂʵÄÖµ¼°a¡¢b¡¢cÈýÕßÖ®¼äµÄ¹ØÏµ»¯¼ò¿ÉµÃa=2b£¬½ø¶øÀûÓÃͨ¹ýÉèA£¨0£¬b£©¡¢B£¨2b£¬0£©£¬ÀûÓùýԵ㼰ABÖеãPµÄÖ±ÏßбÂÊΪ$\frac{1}{2}$¿ÉµÃ½áÂÛ£»
£¨2£©¢Ùͨ¹ýµãA×ø±ê¼°ÀëÐÄÂÊ¿ÉÖªÍÖÔ²µÄ·½³Ì£¬½ø¶ø¿ÉµÃA¡¢BµÄ×ø±ê£¬Í¨¹ýÉèÖ±ÏßAB¡¢DEµÄ·½³Ì¼°M¡¢D¡¢EµÄ±ê×¼£¬ÀûÓÃS¡÷ADM=6S¡÷AEM¼°µãMÔÚABÉϵóöÒ»¸ö¹ØÓÚkµÄ·½³Ì£¬½ø¶ø¼ÆËã¿ÉµÃ½áÂÛ£»¢Úͨ¹ýËıßÐÎADBEÃæ»ýΪS=S¡÷OAD+S¡÷OAE+S¡÷ODB+S¡÷OEB»¯¼ò£¬½ø¶ø¸ù¾Ý»ù±¾²»µÈʽµÄÐÔÖÊÇóµÃ×î´óÖµ£®
½â´ð
½â£º£¨1£©¡ße=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{\sqrt{3}}{2}$£¬
¡à$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$£¬¼´$\frac{b}{a}$=$\frac{1}{2}$£¬
¡àÍÖÔ²C£º$\frac{{x}^{2}}{4{b}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬
ÉèA£¨0£¬b£©¡¢B£¨2b£¬0£©£¬ÔòABÖеãP£¨b£¬$\frac{1}{2}$b£©£¬
¡ßkOP=$\frac{\frac{1}{2}b-0}{b-0}$=$\frac{1}{2}$£¬ÇÒÖ±ÏßDEµÄбÂÊk=$\frac{1}{2}$£¬
¡àµãPÓëµãMÖØºÏ£¬¼´Ö±ÏßDEƽ·ÖÏß¶ÎAB£»
£¨2£©ÓɵãA£¨0£¬1£©¿ÉÖªb=1£¬
ÓÉe2=$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{{a}^{2}-1}{{a}^{2}}$=$\frac{3}{4}$£¬¿ÉÖªa2=4£¬
¡àÍÖÔ²C£º$\frac{{x}^{2}}{4}$+y2=1£¬ÓÚÊÇB£¨2£¬0£©£¬
Ö±ÏßAB¡¢DEµÄ·½³Ì·Ö±ðΪx+2y=2¡¢y=kx£¨k£¾0£©£®
¢ÙÈçͼ£¬ÉèM£¨x0£¬kx0£©¡¢D£¨x1£¬kx1£©¡¢E£¨x2£¬kx2£©£¬ÆäÖÐx1£¼x2£¬
ÇÒx1¡¢x2Âú×ã·½³Ì£¨1+4k2£©x2=4£¬
¹Êx2=-x1=$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬¢Ù
¡ßS¡÷ADM=6S¡÷AEM£¬
¡àx0-x1=6£¨x2-x0£©£¬¼´x0=$\frac{1}{7}$£¨6x2+x1£©=$\frac{5}{7}$x2=$\frac{10}{7\sqrt{1+4{k}^{2}}}$£¬
ÓÖ¡ßÓÉMÔÚABÉÏ£¬
¡àx0+2kx0=2£¬¼´x0=$\frac{2}{1+2k}$£¬
ËùÒÔ$\frac{10}{7\sqrt{1+4{k}^{2}}}$=$\frac{2}{1+2k}$£¬»¯¼òµÃ24k2-25k+6=0£¬
½âµÃk=$\frac{2}{3}$»òk=$\frac{3}{8}$£»
¢ÚÓÉÌâÉè¿ÉÖª|AO|=1¡¢|BO|=2£¬D£¨x1£¬kx1£©¡¢E£¨x2£¬kx2£©£¬
²»·ÁÉèy1=kx1£¬y2=kx2£¬
ÓÉ¢Ù¿ÉÖªµÃx2£¾0£¬¸ù¾ÝEÓëD¹ØÓÚÔµã¶Ô³Æ¿ÉÖªy2=-y1£¾0£¬
¹ÊËıßÐÎADBEÃæ»ýS=S¡÷OAD+S¡÷OAE+S¡÷ODB+S¡÷OEB
=$\frac{1}{2}$|OA|•£¨-x1£©+$\frac{1}{2}$|OA|•x2+$\frac{1}{2}$|OB|•y2+$\frac{1}{2}$|OB|•£¨-y1£©
=$\frac{1}{2}$|OA|£¨x2-x1£©+$\frac{1}{2}$|OB|£¨y2-y1£©
=x2+2y2
=$\sqrt{£¨{x}_{2}+2{y}_{2}£©^{2}}$
=$\sqrt{{{x}_{2}}^{2}+4{{y}_{2}}^{2}+4{x}_{2}{y}_{2}}$
¡Ü$\sqrt{2£¨{{x}_{2}}^{2}+4{{y}_{2}}^{2}£©}$
=2$\sqrt{2}$£¬
µ±ÇÒ½öµ±x2=2y2ʱ£¬ÉÏʽȡµÈºÅ£¬
ËùÒÔËıßÐÎADBEÃæ»ýSµÄ×î´óֵΪ2$\sqrt{2}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëÍÖÔ²µÄ×ÛºÏÎÊÌ⣬ֱÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâÊÇÖ§³ÅÔ²×¶ÇúÏß֪ʶÌåϵµÄÖØµãÄÚÈÝ£¬ÎÊÌâµÄ½â¾ö¾ßÓÐÈë¿Ú¿í¡¢·½·¨Áé»î¶àÑùµÈ£¬¶ø²»Í¬µÄ½âÌâ;¾¶ÆäÔËËãÁ¿·±¼ò²î±ðºÜ´ó£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1£¼x£¼2 | B£® | 1£¼x£¼3 | C£® | 0£¼x£¼3 | D£® | 1£¼x£¼4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6¦Ð+4 | B£® | ¦Ð+4 | C£® | $\frac{5¦Ð}{2}$ | D£® | 2¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com