6£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬µãA£¬B·Ö±ðΪÍÖÔ²CµÄÉ϶¥µã¡¢ÓÒ¶¥µã£¬¹ý×ø±êÔ­µãºúÖ±Ïß½»ÍÖÔ²CÓÚD£¬EÁ½µã£¬½»ABÓÚMµã£¬ÆäÖеãEÔÚµÚÒ»ÏóÏÞ£¬ÉèÖ±ÏßDEµÄбÂÊΪk£®
£¨1£©µ±k=$\frac{1}{2}$ʱ£¬Ö¤Ã÷Ö±ÏßDEƽ·ÖÏß¶ÎAB£®
£¨2£©ÒÑÖªµãA£¨0£¬1£©£¬Ôò£º
¢ÙÈôS¡÷ADM=6S¡÷AEM£¬Çók£»
¢ÚÇóËıßÐÎADBEÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©Í¨¹ýÀëÐÄÂʵÄÖµ¼°a¡¢b¡¢cÈýÕßÖ®¼äµÄ¹ØÏµ»¯¼ò¿ÉµÃa=2b£¬½ø¶øÀûÓÃͨ¹ýÉèA£¨0£¬b£©¡¢B£¨2b£¬0£©£¬ÀûÓùýÔ­µã¼°ABÖеãPµÄÖ±ÏßбÂÊΪ$\frac{1}{2}$¿ÉµÃ½áÂÛ£»
£¨2£©¢Ùͨ¹ýµãA×ø±ê¼°ÀëÐÄÂÊ¿ÉÖªÍÖÔ²µÄ·½³Ì£¬½ø¶ø¿ÉµÃA¡¢BµÄ×ø±ê£¬Í¨¹ýÉèÖ±ÏßAB¡¢DEµÄ·½³Ì¼°M¡¢D¡¢EµÄ±ê×¼£¬ÀûÓÃS¡÷ADM=6S¡÷AEM¼°µãMÔÚABÉϵóöÒ»¸ö¹ØÓÚkµÄ·½³Ì£¬½ø¶ø¼ÆËã¿ÉµÃ½áÂÛ£»¢Úͨ¹ýËıßÐÎADBEÃæ»ýΪS=S¡÷OAD+S¡÷OAE+S¡÷ODB+S¡÷OEB»¯¼ò£¬½ø¶ø¸ù¾Ý»ù±¾²»µÈʽµÄÐÔÖÊÇóµÃ×î´óÖµ£®

½â´ð ½â£º£¨1£©¡ße=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{\sqrt{3}}{2}$£¬
¡à$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$£¬¼´$\frac{b}{a}$=$\frac{1}{2}$£¬
¡àÍÖÔ²C£º$\frac{{x}^{2}}{4{b}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬
ÉèA£¨0£¬b£©¡¢B£¨2b£¬0£©£¬ÔòABÖеãP£¨b£¬$\frac{1}{2}$b£©£¬
¡ßkOP=$\frac{\frac{1}{2}b-0}{b-0}$=$\frac{1}{2}$£¬ÇÒÖ±ÏßDEµÄбÂÊk=$\frac{1}{2}$£¬
¡àµãPÓëµãMÖØºÏ£¬¼´Ö±ÏßDEƽ·ÖÏß¶ÎAB£»
£¨2£©ÓɵãA£¨0£¬1£©¿ÉÖªb=1£¬
ÓÉe2=$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{{a}^{2}-1}{{a}^{2}}$=$\frac{3}{4}$£¬¿ÉÖªa2=4£¬
¡àÍÖÔ²C£º$\frac{{x}^{2}}{4}$+y2=1£¬ÓÚÊÇB£¨2£¬0£©£¬
Ö±ÏßAB¡¢DEµÄ·½³Ì·Ö±ðΪx+2y=2¡¢y=kx£¨k£¾0£©£®
¢ÙÈçͼ£¬ÉèM£¨x0£¬kx0£©¡¢D£¨x1£¬kx1£©¡¢E£¨x2£¬kx2£©£¬ÆäÖÐx1£¼x2£¬
ÇÒx1¡¢x2Âú×ã·½³Ì£¨1+4k2£©x2=4£¬
¹Êx2=-x1=$\frac{2}{\sqrt{1+4{k}^{2}}}$£¬¢Ù
¡ßS¡÷ADM=6S¡÷AEM£¬
¡àx0-x1=6£¨x2-x0£©£¬¼´x0=$\frac{1}{7}$£¨6x2+x1£©=$\frac{5}{7}$x2=$\frac{10}{7\sqrt{1+4{k}^{2}}}$£¬
ÓÖ¡ßÓÉMÔÚABÉÏ£¬
¡àx0+2kx0=2£¬¼´x0=$\frac{2}{1+2k}$£¬
ËùÒÔ$\frac{10}{7\sqrt{1+4{k}^{2}}}$=$\frac{2}{1+2k}$£¬»¯¼òµÃ24k2-25k+6=0£¬
½âµÃk=$\frac{2}{3}$»òk=$\frac{3}{8}$£»
¢ÚÓÉÌâÉè¿ÉÖª|AO|=1¡¢|BO|=2£¬D£¨x1£¬kx1£©¡¢E£¨x2£¬kx2£©£¬
²»·ÁÉèy1=kx1£¬y2=kx2£¬
ÓÉ¢Ù¿ÉÖªµÃx2£¾0£¬¸ù¾ÝEÓëD¹ØÓÚÔ­µã¶Ô³Æ¿ÉÖªy2=-y1£¾0£¬
¹ÊËıßÐÎADBEÃæ»ýS=S¡÷OAD+S¡÷OAE+S¡÷ODB+S¡÷OEB
=$\frac{1}{2}$|OA|•£¨-x1£©+$\frac{1}{2}$|OA|•x2+$\frac{1}{2}$|OB|•y2+$\frac{1}{2}$|OB|•£¨-y1£©
=$\frac{1}{2}$|OA|£¨x2-x1£©+$\frac{1}{2}$|OB|£¨y2-y1£©
=x2+2y2
=$\sqrt{£¨{x}_{2}+2{y}_{2}£©^{2}}$
=$\sqrt{{{x}_{2}}^{2}+4{{y}_{2}}^{2}+4{x}_{2}{y}_{2}}$
¡Ü$\sqrt{2£¨{{x}_{2}}^{2}+4{{y}_{2}}^{2}£©}$
=2$\sqrt{2}$£¬
µ±ÇÒ½öµ±x2=2y2ʱ£¬ÉÏʽȡµÈºÅ£¬
ËùÒÔËıßÐÎADBEÃæ»ýSµÄ×î´óֵΪ2$\sqrt{2}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëÍÖÔ²µÄ×ÛºÏÎÊÌ⣬ֱÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâÊÇÖ§³ÅÔ²×¶ÇúÏß֪ʶÌåϵµÄÖØµãÄÚÈÝ£¬ÎÊÌâµÄ½â¾ö¾ßÓÐÈë¿Ú¿í¡¢·½·¨Áé»î¶àÑùµÈ£¬¶ø²»Í¬µÄ½âÌâ;¾¶ÆäÔËËãÁ¿·±¼ò²î±ðºÜ´ó£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÒÑÖªÍÖÔ²O£º$\frac{{x}^{2}}{4}$+y2=1µÄÓÒ½¹µãΪF£¬µãB£¬C·Ö±ðÊÇÍÖÔ²OµÄÉÏ¡¢Ï¶¥µã£¬µãPÊÇÖ±Ïßl£ºy=-2ÉϵÄÒ»¸ö¶¯µã£¨ÓëyÖá½»µã³ýÍ⣩£¬Ö±ÏßPC½»ÍÖÔ²ÓÚÁíÒ»µãM£®
£¨1£©µ±Ö±ÏßPM¹ýÍÖÔ²µÄÓÒ½¹µãFʱ£¬Çó¡÷FBMµÄÃæ»ý£»
£¨2£©¢Ù¼ÇÖ±ÏßBM£¬BPµÄбÂÊ·Ö±ðΪk1£¬k2£¬ÇóÖ¤£ºk1•k2Ϊ¶¨Öµ£»
¢ÚÇó$\overrightarrow{PB}$•$\overrightarrow{PM}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãΪF£¬ÆäÓÒ×¼ÏßÓëxÖáµÄ½»µãΪA£¬ÈôÔÚÍÖÔ²ÉÏ´æÔÚµãPÂú×ãPF=AF£¬Ôò$\frac{c^2}{a^2}$-2£¨lnc-lna£©µÄ·¶Î§ÊÇ£¨1£¬$\frac{1}{4}$+2ln2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈôÒ»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåÊÇËÄÀâ×¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªf¡ä£¨x£©=3x2-6x£¬ÇÒf£¨0£©=4£¬½â²»µÈʽf£¨x£©£¾0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®²»µÈʽ$\frac{x+1}{x-1}£¾2$³ÉÁ¢µÄÒ»¸ö³ä·Ö²»±ØÒªÌõ¼þÊÇ£¨¡¡¡¡£©
A£®1£¼x£¼2B£®1£¼x£¼3C£®0£¼x£¼3D£®1£¼x£¼4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èôº¯Êýf£¨x£©=ax3+3x2+3x£¨a£¼0£©ÔÚÇø¼ä£¨1£¬2£©ÊÇÔöº¯Êý£¬ÔòaµÄȡֵ·¶Î§ÊÇ[-$\frac{5}{4}$£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®6¦Ð+4B£®¦Ð+4C£®$\frac{5¦Ð}{2}$D£®2¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=x2-2cosx£¬¶ÔÓÚ$[{-\frac{¦Ð}{2}£¬\frac{¦Ð}{2}}]$ÉϵÄÈÎÒâx1£¬x2£¬ÓÐÈçÏÂÌõ¼þ£º¢Ùx1£¾x2£» ¢Ú$x_1^2£¾x_2^2$£»  ¢Û|x1|£¾x2£» ¢Üx1£¾|x2|£¬ÆäÖÐÄÜʹ$f£¨{x_1}£©£¾f£¨{x_2^{\;}}£©$ºã³ÉÁ¢µÄÌõ¼þ¸öÊý¹²ÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸