精英家教网 > 高中数学 > 题目详情
18.若函数f(x)=ax3+3x2+3x(a<0)在区间(1,2)是增函数,则a的取值范围是[-$\frac{5}{4}$,0).

分析 先求导,讨论在区间(1,2)上,使f′(x)>0,进而求a的范围.

解答 解:f′(x)=3ax2+6x+3,
当a<0时,f(x)在区间(1,2)是增函数
当且仅当:f′(1)≥0且f′(2)≥0,即有3a+9≥0且12a+15≥0
解得-$\frac{5}{4}$≤a<0,
∴a的取值范围[-$\frac{5}{4}$,0).
故答案为:[-$\frac{5}{4}$,0).

点评 主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.在分析导函数正负时,需要对参数进行分析讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆x2+4y2=16,点M(2,1).
(1)求椭圆的焦距和离心率;
(2)若直线l过点M与椭圆交于A,B两点,且点M是线段AB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,正方形ABCD的边长为$2\sqrt{2}$,E、F分别是DC和BC的中点,H是正方形的对角线AC与EF的交点,N是正方形两对角线的交点,现沿EF将△CEF折起到△PEF的位置,使得PH⊥AH,连结PA,PB,PD(如图2).
(Ⅰ)求证:BD⊥AP;
(Ⅱ)求三棱锥A-BDP的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,点A,B分别为椭圆C的上顶点、右顶点,过坐标原点胡直线交椭圆C于D,E两点,交AB于M点,其中点E在第一象限,设直线DE的斜率为k.
(1)当k=$\frac{1}{2}$时,证明直线DE平分线段AB.
(2)已知点A(0,1),则:
①若S△ADM=6S△AEM,求k;
②求四边形ADBE面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线$y=x+\frac{1}{2}$与曲线x2-y|y|=1的交点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则被截去部分的几何体的表面积为54+18$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,AB=BC=$\sqrt{2}$,PA=2,已知此三棱锥外接球恰为一正方体的内切球,则该正方体的体积为16$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.“函数f(x)=x(x+a)(a为常数)为偶函数”的充要条件是a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在直三棱柱ABC-A′B′C′中,AB=AC=2,AA′=3,AB⊥AC,E为棱B′C′的中点,F为侧棱CC′上一点,若CE⊥AF,则AF与平面ABB′A′所成的角的正切值为(  )
A.3B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案