精英家教网 > 高中数学 > 题目详情
10.已知a=0.40.4,b=1.20.4,c=log20.4,则a,b,c的大小关系为(  )
A.c<a<bB.c<b<aC.a<b<cD.a<c<b

分析 利用指数函数和对数函数的性质求解.

解答 解:∵0<a=0.40.4<0.40=1,
b=1.20.4>20=1,
c=log20.4<log21=0,
∴a,b,c的大小关系为a<c<b.
故选:D.

点评 本题考查三个数的大小的判断,是基础题,解题时要认真审题,注意指数函数和对数函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若输入的数字是“68”,则下列程序运行后输出的结果是86

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若θ是第一象限角,tanθ=$\frac{3}{4}$,则sinθ等于(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点A(1,1)和点B(-1,-3)在曲线C:y=ax3+bx2+d(a,b,d为常数),若曲线在点A和点B处的切线互相平行,则a+b+d=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a∈R,函数f(x)=x2-a|x-1|.
(1)当a=1时,求函数f(x)的最小值;
(2)当a<0时,讨论y=f(x)的图象与y=|x-a|的图象的公共点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)=$\left\{\begin{array}{l}{{k}^{2}x+{a}^{2}-k(x≥0)}\\{{x}^{2}+({a}^{2}+4a)x+(2-a)^{2}(x<0)}\end{array}\right.$,其中a∈R,若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x2)=f(x1)成立,则k的取值范围为(  )
A.[-20,-4]B.[-30,-9]C.[-4,0]D.[-9,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.
(1)求a,b的值;    
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量,$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(3,-2),且($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{b}$,则m=(  )
A.$-\frac{2}{3}$B.$\frac{2}{3}$C.-8D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x>0,y>0且x+y=xy,则x+y的取值范围是(  )
A.(0,1]B.[2,+∞)C.(0,4]D.[4,+∞)

查看答案和解析>>

同步练习册答案