分析 (1)求函数的导数,根据导数的几何意义求出函数的切线斜率以及f(2),建立方程组关系即可求a,b的值;
(2)求函数的导数,利用函数单调性和导数之间的关系即可求f(x)的单调区间.
解答 解:(1)∵y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4,
∴当x=2时,y=2(e-1)+4=2e+2,即f(2)=2e+2,
同时f′(2)=e-1,
∵f(x)=xea-x+bx,
∴f′(x)=ea-x-xea-x+b,
则$\left\{\begin{array}{l}{f(2)=2{e}^{a-2}+2b=2e+2}\\{f′(2)={e}^{a-2}-2{e}^{a-2}+b=e-1}\end{array}\right.$,
即a=2,b=e;
(2)∵a=2,b=e;
∴f(x)=xe2-x+ex,
∴f′(x)=e2-x-xe2-x+e=(1-x)e2-x+e,
f″(x)=-e2-x-(1-x)e2-x=(x-2)e2-x,
由f″(x)>0得x>2,由f″(x)<0得x<2,
即当x=2时,f′(x)取得极小值f′(2)=(1-2)e2-2+e=e-1>0,
∴f′(x)>0恒成立,
即函数f(x)是增函数,
即f(x)的单调区间是(-∞,+∞).
点评 本题主要考查导数的应用,根据导数的几何意义,结合切线斜率建立方程关系以及利用函数单调性和导数之间的关系是解决本题的关键.综合性较强.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | c<b<a | C. | a<b<c | D. | a<c<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{9}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题p∨q是假命题 | B. | 命题p∧q是真命题 | ||
| C. | 命题p∧(¬q)是真命题 | D. | 命题p∨(¬q)是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥4} | B. | {x|1≤x≤4} | C. | {x|x≥1} | D. | {x|x≥-2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com