精英家教网 > 高中数学 > 题目详情
已知当x∈R时,不等式a+cos2x<5-4sinx+
5a-4
恒成立,求实数a的取值范围.
考点:函数恒成立问题
专题:函数的性质及应用,不等式的解法及应用
分析:在不等式中含有两个变量a及x,其中x的范围已知(x∈R),另一变量a的范围即为所求,故可考虑将a及x分离.构造函数f(x)=4sinx+cos2x,配方求其最大值,然后求解无理不等式得答案.
解答: 解:原不等式即:4sinx+cos2x<
5a-4
-a+5.
要使上式恒成立,只需
5a-4
-a+5大于4sinx+cos2x的最大值,
故上述问题转化成求f(x)=4sinx+cos2x的最值问题.
f(x)=4sinx+cos2x=-2sin2x+4sinx+1=-2(sinx-1)2+3≤3,
5a-4
-a+5>3,即
5a-4
>a-2
5a-4≥0
a-2<0
5a-4≥0
a-2≥0
5a-4>(a-2)2

解得:
4
5
≤a<2
或2≤a<8.
综上,实数a的取值范围是[
4
5
,8)
点评:本题考查了函数恒成立问题,考查了数学转化思想方法,训练了无理不等式的解法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是R上的奇函数,且对任意的实数a,b当a+b≠0时,都有
f(a)+f(b)
a+b
>0
(1)若a>b,试比较f(a),f(b)的大小;
(2)若存在实数x∈[
1
2
3
2
]使得不等式f(x-c)+f(x-c2)>0成立,试求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-2|+|x+3|的最小值为m.
(Ⅰ)求m;
(Ⅱ)当a+2b+c=m时,求a2+2b2+3c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x2+
3
x
的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,1),
n
=(
3
Acosx,
A
2
cos2x)(A>0),函数f(x)=
m
n
的最大值为6.
(Ⅰ)求A;
(Ⅱ)将函数y=f(x)的图象向左平移
π
12
个单位,再将所得图象上各点的横坐标缩短为原来的
1
2
倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[0,
24
]上的值域.
(Ⅲ)若函数y=f(x)满足方程f(x)=k(3<k<6),求此方程在[0,
6
]内所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

求z=3x-2y的最大值和最小值,式中的x、y满足条件
4x-5y+21≥0
x-3y+7≤0
2x+y-7≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知凸四边形ABCD,试比较AB•CD+BC•DA与AC•BD的大小.
(Ⅱ)△ABC三边a,b,c上的中线分别为ma,mb,mc,求证:abmc+bcma+camb≥a2ma+b2mb+c2mc

查看答案和解析>>

科目:高中数学 来源: 题型:

某研究性学习小组对3月至7月连续100天昼夜温差大小与某种子发芽多少之间的关系进行研究,每天浸泡100颗种子的发芽情况统计如下表(1):
          表1
分组(单位:个)频数频率
[10,15)50.050
[15,20)200.200
[20,25)0.350
[25,30)30
[30,35)100.100
合计1001.00
(Ⅰ)频率分布表中的①,②位置应填什么数据?并补全频率分布直方图,作出频率分布折线图;根据频率分布直方图,估计100天里种子发芽的平均值;(8分)
(Ⅱ)下面是3月1日至5日每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数的详细记录:
      表2
日期3月1日3月2日3月3日3月4日3月2日
温差(℃)101113128
发芽数(颗)2325302616
(i)请根据3月2日至3月4日的数据,用最小二乘法求出y关于x的线性回归方程;
(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(i)中所得的线性回归方程是否可靠?(6分)
(参考公式:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-x+2alnx
(1)求f(x)的单调区间;
(2)0<a<
1
8
时,判断方程:f(x)=(a+1)x根的个数并说明理由;
(3)f(x)有两个极值点x1,x2且x1<x2,证明:f(x2)>
-3-2ln2
8

查看答案和解析>>

同步练习册答案