精英家教网 > 高中数学 > 题目详情
探究函数f(x)=x2+
3
x
的单调性,并证明你的结论.
考点:函数单调性的判断与证明
专题:函数的性质及应用
分析:利用函数的单调性的定义证明,本题的关键是分解因式,判断因式的符号
解答: 解:f(x1)-f(x2)=(x1-x2)(x1+x2-
3
x1x2
)=(x1-x2
(x1)2x2+x1(x2)2-3
x1x2
,设x1=x2
(x1)2x2+x1(x2)2-3
x1x2
=0即2(x13-3=0解得x1=
312
2

因为函数定义域(-∞,0)∪(0,+∞),
 自变量x1,x2在区间(-∞,0),(0,
312
2
),(
312
2
,+∞) 内取值时因式
(x1)2x2+x1(x2)2-3
x1x2
符号是确定的,
而因式(x1-x2)的符号与x1,x2的大小有关系∴可以确定函数的单调区间为(-∞,0),(0,
312
2
),(
312
2
,+∞)

.证明:设x1>x2
312
2
,f(x1)-f(x2)=(x12+
3
x1
-(x22-
3
x2
=(x1-x2)(
(x1)2x2+x1(x2)2-3
x1x2

∵x1>x2
312
2
∴x1-x2>0,
(x1)2x2+x1(x2)2-3
x1x2
>0∴f(x1)-f(x2)>0,即f(x1)>f(x2
∴函数f(x)=x2+
3
x
区间(
312
2
,+∞)上为递增函数
(2)设x1<x2
312
2
,且x1≠0,x2≠0,f(x1)-f(x2)=(x12+
3
x1
-(x22-
3
x2
=(x1-x2
(x1)2x2-x1(x2)2-3
x1x2

∵x1<x2<∴x1-x2<0,
(x1)2x2+x1(x2)2-3
x1x2
<0∴f(x1)-f(x2)>0,即f(x1)>f(x2
函数f(x)=x2+
3
x
∴在区间(-∞,0),(0,
312
2
)上为减函数
点评:本题考查了函数的单调性的定义,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点N是PA的中点,且PA=AB=2,点O是△PCD内(含边界)一动点,则三棱锥O-ADN的体积不小于
3
6
的概率为(  )
A、
2
3
B、
1
2
C、
1
3
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系中,已知定点A1(-
7
,0),A2
7
,0),动点B1(0,m),B2(0,
1
m
),(m∈R且m≠0),直线A1B1与直线A2B2的交点N的轨迹为C.
(1)求轨迹C的方程;
(2)斜率为1的直线l交轨迹C于P、Q两点,以PQ为直径的圆与y轴相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有1个白球和4个黑球,且球的大小、形状都相同.每次从其中任取一个球,若取到白球则结束,否则,继续取球,但取球总次数不超过k次(k≥5).
(Ⅰ)当每次取出的黑球不再放回时,求取球次数ξ的数学期望与方差;
(Ⅱ)当每次取出的黑球仍放回去时,求取球次数η的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知点O(0,0).A(3,0)、B(0,3)、C(cosα,sinα),D(-2cosα,-t),其中α∈(
π
2
2
).
(1)若
AC
BC
=-1,求
2sin2α+2sinαcosα
1+tanα
的值.
(2)若f(α)=
OC
OD
-t2+2在定义域α∈(
π
2
2
)有最小值-1,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(a,0)的直线l与圆(x-1)2+(y-3)2=4相交于A、B两点,存在PA=AB,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知当x∈R时,不等式a+cos2x<5-4sinx+
5a-4
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-1,1},B={x|x2-2ax+b=0},若B≠∅且B?A,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,侧棱垂直底面的三棱柱ABC-A1B1C1的底面ABC位于平行四边形ACDE中,AE=2,AC=AA1=4,∠E=60°,点B为DE中点.
(1)求证:平面A1BC⊥平面A1ABB1
(2)求A1C与平面A1ABB1所成的角的正弦值.

查看答案和解析>>

同步练习册答案