精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-2|+|x+3|的最小值为m.
(Ⅰ)求m;
(Ⅱ)当a+2b+c=m时,求a2+2b2+3c2的最小值.
考点:二维形式的柯西不等式,绝对值不等式的解法
专题:不等式的解法及应用
分析:(Ⅰ)利用绝对值三角不等式求得|x-2|+|x+3|的最小值,可得m的值.
(Ⅱ)由(1)得:a+2b+c=5,再利用柯西不等式求得a2+2b2+3c2的最小值.
解答: 解:(Ⅰ)|x-2|+|x+3|≥|(x-2)-(x+3)|=5,当-3≤x≤2时取等号,∴m=5.
(Ⅱ)由(1)得:a+2b+c=5,再由柯西不等式得:(a+2b+c)2≤(1+2+
1
3
)(a2+2b2+3c2)

a2+2b2+3c2
15
2
,当且仅当a=b=
3
2
,c=
1
2
时取等,∴a2+2b2+3c2的最小值为
15
2
点评:本题主要考查绝对值三角不等式、柯西不等式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=lnx+2x-6有唯一零点,其零点的范围是(  )
A、(1,2)
B、(1.5,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,x∈R(其中ω>0)
(1)求函数f(x)的最大值;
(2)若函数f(x)的最小正周期为π,试确定ω的值,并求函数y=f(x),x∈R的单调增区间;
(3)在(2)的条件下,若不等式|f(x)-m|<2在x∈[
π
4
π
2
]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系中,已知定点A1(-
7
,0),A2
7
,0),动点B1(0,m),B2(0,
1
m
),(m∈R且m≠0),直线A1B1与直线A2B2的交点N的轨迹为C.
(1)求轨迹C的方程;
(2)斜率为1的直线l交轨迹C于P、Q两点,以PQ为直径的圆与y轴相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)解不等式:x+|2x-1|<3
(2)求函数y=xlnx的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有1个白球和4个黑球,且球的大小、形状都相同.每次从其中任取一个球,若取到白球则结束,否则,继续取球,但取球总次数不超过k次(k≥5).
(Ⅰ)当每次取出的黑球不再放回时,求取球次数ξ的数学期望与方差;
(Ⅱ)当每次取出的黑球仍放回去时,求取球次数η的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知点O(0,0).A(3,0)、B(0,3)、C(cosα,sinα),D(-2cosα,-t),其中α∈(
π
2
2
).
(1)若
AC
BC
=-1,求
2sin2α+2sinαcosα
1+tanα
的值.
(2)若f(α)=
OC
OD
-t2+2在定义域α∈(
π
2
2
)有最小值-1,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知当x∈R时,不等式a+cos2x<5-4sinx+
5a-4
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方形ABCD-A1B1C1D1中,E,F分别为A1B1,CD的中点.
(1)求直线EC与平面A1ADD1所成角的正弦值;
(2)求二面角E-AF-B的余弦值.

查看答案和解析>>

同步练习册答案