精英家教网 > 高中数学 > 题目详情
函数f(x)=lnx+2x-6有唯一零点,其零点的范围是(  )
A、(1,2)
B、(1.5,2)
C、(2,3)
D、(3,4)
考点:函数零点的判定定理
专题:函数的性质及应用
分析:先判断函数的单调性,利用函数零点的判断条件即可得到结论.
解答: 解:函数f(x)的定义域为(0,+∞),且函数单调递增,
∵f(2)=ln2+4-6=ln2-2<0,f(3)=ln3+6-6=ln3>0,
∴f(x)=lnx+2x-6的零点所在区间为(2,3),
故选:C.
点评:本题主要考查函数零点所在区间的判断,根据函数零点存在的条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某单位为了制定节能减排的目标,先调查了用电量y(单位:度)与气温x(单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
x(单位:℃)171410-1
y(单位:度)24343864
由表中数据得线性回归方程
y
=-2x+a.当气温为20°c时,预测用电量约为(  )
A、20B、16C、10D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

在200件产品中,192有件一级品,8件二级品,则下列事件:
①在这200件产品中任意选出9件,全部是一级品;
②在这200件产品中任意选出9件,全部是二级品;
③在这200件产品中任意选出9件,不全是一级品;
④在这200件产品中任意选出9件,至少一件是一级品.
其中的随机事件有(  )
A、①③B、③④C、②④D、①②

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4x+c,p=f(1),q=f(4),r=f(-2),则p,q,r的大小关系是(  )
A、r>p>q
B、q>p>r
C、r>q>p
D、q>r>p

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-1<x<2},B={x|-1<x<1},则A∩B=(  )
A、∅
B、{x|-1<x<2}
C、{x|-1<x<1}
D、{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?∈(1,+∞),函数f(x)=log2(x+1)-1有零点;命题q:“a=-1”是“直线(a-1)x+2y=0与直线x-ay+1=0垂直”的充分必要条件,则下列命题为真命题的是(  )
A、p∧q
B、p∨(¬q)
C、(¬p)∧q
D、p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
1
x
<1的解集为(  )
A、(1,+∞)
B、(-∞,0)∪(1,+∞)
C、(-∞,0)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是R上的奇函数,且对任意的实数a,b当a+b≠0时,都有
f(a)+f(b)
a+b
>0
(1)若a>b,试比较f(a),f(b)的大小;
(2)若存在实数x∈[
1
2
3
2
]使得不等式f(x-c)+f(x-c2)>0成立,试求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-2|+|x+3|的最小值为m.
(Ⅰ)求m;
(Ⅱ)当a+2b+c=m时,求a2+2b2+3c2的最小值.

查看答案和解析>>

同步练习册答案