分析 (1)连结AC、BD,交于点O,连结A1C1、B1D1,交于P,连结OP,推导出OP⊥AC,AC⊥BD,由此能证明AC⊥BB1.
(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出二面角D1-A1A-B1的大小.
解答
证明:(1)连结AC、BD,交于点O,连结A1C1、B1D1,交于P,连结OP,
∵上下底面是平行的两正方形,上下底面的中心连线垂直于上下底面,
∴OP⊥AC,
∵ABCD是正方形,∴AC⊥BD,
∵OP∩BD=O,∴AC⊥平面BDD1B1,
∵BB1?平面BDD1B1,∴AC⊥BB1.
解:(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,
A1(6$\sqrt{2}$,0,4),A(3$\sqrt{2}$,0,0),B1(0,6$\sqrt{2}$,4),D1(0,-6$\sqrt{2}$,4),
$\overrightarrow{A{A}_{1}}$=(3$\sqrt{2}$,0,4),$\overrightarrow{A{D}_{1}}$=(-3$\sqrt{2},-6\sqrt{2}$,4),$\overrightarrow{A{B}_{1}}$=(-3$\sqrt{2}$,6$\sqrt{2}$,4),
设平面D1A1A的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{A}_{1}}=3\sqrt{2}x+4z=0}\\{\overrightarrow{n}•\overrightarrow{A{D}_{1}}=-3\sqrt{2}x-6\sqrt{2}y+4z=0}\end{array}\right.$,取y=$\sqrt{2}$,得$\overrightarrow{n}$=(-$\sqrt{2}$,$\sqrt{2}$,$\frac{3}{2}$),
设平面A1AB1的法向量为$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{A{A}_{1}}=3\sqrt{2}a+4c=0}\\{\overrightarrow{m}•\overrightarrow{A{B}_{1}}=-3\sqrt{2}a+6\sqrt{2}b+4c=0}\end{array}\right.$,取a=$\sqrt{2}$,得$\overrightarrow{m}$=($\sqrt{2}$,$\sqrt{2}$,-$\frac{3}{2}$),
设二面角D1-A1A-B1的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\frac{9}{4}}{\frac{25}{4}}$=$\frac{9}{25}$,
∴二面角D1-A1A-B1的大小为arccos$\frac{9}{25}$.
点评 本题考查异面直线垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,5] | B. | (-∞,4] | C. | (-∞,2] | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com