分析 (I)利用诱导公式、正弦定理,结合和角的正弦公式,化简,即可求角C的大小;
(Ⅱ)若c=4,△ABC的面积为4$\sqrt{3}$,求出a=b=4,即可求向量$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影.
解答 解:(I)在△ABC中,∵ccos(2016π-A)-$\sqrt{3}$ccos($\frac{3π}{2}$-A)=a+b,
∴ccosA+$\sqrt{3}$csinA=a+b,
∴sinCcosA+$\sqrt{3}$sinCsinA=sinA+sinB
∴sinCcosA+$\sqrt{3}$sinCsinA=sinA+sin(A+C)
∴$\sqrt{3}$sinCsinA=sinA+cosCsinA,
∴$\sqrt{3}$sinC=1+cosC
∴C=60°;
(Ⅱ)∵c=4,△ABC的面积为4$\sqrt{3}$,
∴16=a2+b2-ab,$\frac{1}{2}ab•\frac{\sqrt{3}}{2}$=4$\sqrt{3}$,
∴a=b=4
∴向量$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影为$\frac{\overrightarrow{AB}•\overrightarrow{BC}}{|\overrightarrow{BC}|}$=-2.
点评 本题考查诱导公式、正弦定理、和角的正弦公式,考查平面向量的数量积的定义,投影概念,注意向量的夹角,是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{49}{128}$ | C. | $\frac{81}{128}$ | D. | $\frac{125}{128}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 2e | D. | 2e2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “至少有1个正面朝上”,“都是反面朝上” | |
| B. | “至少有1个正面朝上”,“至少有1个反面朝上” | |
| C. | “恰有1个正面朝上”,“恰有2个正面朝上” | |
| D. | “至少有1个反面朝上”,“都是反面朝上” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A=2,ω=2,φ=$\frac{3π}{4}$ | B. | A=2,ω=2,φ=$\frac{5π}{4}$ | C. | A=2,ω=$\frac{1}{2}$,φ=$\frac{3π}{4}$ | D. | A=2,ω=$\frac{1}{2}$,φ=$\frac{5π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com