【题目】已知抛物线
的焦点到直线
的距离为
,过点
的直线
与
交于
、
两点.
(1)求抛物线
的准线方程;
(2)设直线
的斜率为
,直线
的斜率为
,若
,且
与
的交点在抛物线
上,求直线
的斜率和点
的坐标.
科目:高中数学 来源: 题型:
【题目】东京夏季奥运会推迟至2021年7月23日至8月8日举行,此次奥运会将设置4
100米男女混泳接力赛这一新的比赛项目,比赛的规则是:每个参赛国家派出2男2女共计4名运动员参加比赛,按照仰泳
蛙泳
蝶泳
自由泳的接力顺序,每种泳姿100米且由1名运动员完成,且每名运动员都要出场.若中国队确定了备战该项目的4名运动员名单,其中女运动员甲只能承担仰泳或者自由泳,男运动员乙只能承担蝶泳或者蛙泳,剩下2名运动员四种泳姿都可以承担,则中国队参赛的安排共有( )
A.144种B.8种C.24种D.12种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=axlnx﹣x2﹣ax+1(a∈R)在定义域内有两个不同的极值点.
(1)求实数a的取值范围;
(2)设两个极值点分别为x1,x2,x1<x2,证明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C:
过原点的直线与椭圆交于A,B两点(点A在第一象限),过点A作x轴的垂线,垂足为点
,设直线BE与椭圆的另一交点为P,连接AP得到直线l,交x轴于点M,交y轴于点N.
![]()
(1)若
,求直线AP的斜率;
(2)记
的面积分别为S1,S2,S3,求
的的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
中前两项
给定,若对于每个正整数
,均存在正整数
(
)使得
,则称数列
为“
数列”.
(1)若数列
为
的等比数列,当
时,试问:
与
是否相等,并说明数列
是否为“
数列”;
(2)讨论首项为
、公差为
的等差数列
是否为“
数列”,并说明理由;
(3)已知数列
为“
数列”,且
,记
,
,其中正整数
, 对于每个正整数
,当正整数
分别取1、2、
、
时
的最大值记为
、最小值记为
. 设
,当正整数
满足
时,比较
与
的大小,并求出
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆
(a>b>0)的左、右焦点分别为F1,F2,过点F2的直线交椭圆于M,N两点.已知椭圆的短轴长为
,离心率为
.
![]()
(1)求椭圆的标准方程;
(2)当直线MN的斜率为
时,求
的值;
(3)若以MN为直径的圆与x轴相交的右交点为P(t,0),求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高二某班共有45人,学号依次为1、2、3、…、45,现按学号用系统抽样的办法抽取一个容量为5的样本,已知学号为6、24、33的同学在样本中,那么样本中还有两个同学的学号应为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com