精英家教网 > 高中数学 > 题目详情
求y=logasin2x(a>0且a≠1)的导数.
考点:导数的运算
专题:计算题
分析:根据常见导数的求导公式进行计算即可.
解答: 解:y′=(logasin2x)′
=
1
sin2x
•lna•(sin2x)′
=
1
sin2x
•lna•2cos2x
=2lnatan2x.
点评:本题考查了导数的运算,牢记常见导数的求导公式是解题的关键,本题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
acos2
ωx
2
+
1
2
asinωx-
3
2
a(ω>0,a>0在一个周期内的图象如图所示,其中点A为图象上的最高点,点B,C为图象与x轴的两个相邻交点,且△ABC是边长为4的正三角形.
(1)求ω与a的值;
(2)若f(x0)=
8
3
5
,且x0∈(-
10
3
2
3
),求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3ax2-2(a+b)x+b(a>0)中,|f(0)|≤2,|f(1)|≤2是否存在函数f(x)使f(
1
2
)=-2
?若存在,求出函数f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:sin72°cos27°-sin18°cos63°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别是a,b,c,已知
a
3
cosA
=
c
sinC
=
a
sinA

(1)求A的大小;
(2)若a=6,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin(2x+
π
2
)图象的一条对称轴方程为(  )
A、x=-
π
2
B、x=-
π
4
C、x=
π
8
D、x=
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b是两条不同的直线,α,β是两个不同的平面,a?α,b⊥β,则α∥β是a⊥b的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、即非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x(x-4)≤0},B={x|log2(x2-x)>1},则A∩B=(  )
A、(2,4]
B、[2,4]
C、(-∞,0)∪[0,4]
D、(-∞,-1)∪[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1所示,直角梯形ABCD,∠ADC=90°,AB∥CD,AD=CD=
1
2
AB=2,点E为AC的中点,将△ACD沿AC折起,使折起后的平面ACD与平面ABC垂直(如图2),在图2所示的几何体D-ABC中.
(1)求证:BC⊥平面ACD;
(2)点F在棱CD上,且满足AD∥平面BEF,求几何体F-BCE的体积.

查看答案和解析>>

同步练习册答案