精英家教网 > 高中数学 > 题目详情
已知过点A﹙0,
7
3
﹚,B﹙7,0﹚的直线l1与过点C﹙2,1﹚,D﹙3,k+1)的直线l2和两坐标轴围成的四边形内接于一个圆,求实数k的值.
考点:直线的倾斜角
专题:直线与圆
分析:根据四点共圆的条件可知,四边形的2个对角之和是180°,即l1与l2是相互垂直的,利用两条直线斜率的乘积为-1,即可得到结论.
解答: 解:∵过点A﹙0,
7
3
﹚,B﹙7,0﹚的直线l1与过点C﹙2,1﹚,D﹙3,k+1)的直线l2和两坐标轴围成的四边形内接于一个圆,
∴根据四点共圆的条件可知l1与l2是相互垂直,
即l1与l2对应的斜率满足k1•k2=-1,
7
3
-7
k+1-1
3-2
=-1

-
1
3
k
1
=-1
,解得k=3.
点评:本题主要考查直线垂直与直线斜率之间的关系,利用四点共圆得到直线垂直是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c∈R*,a+b+c=6,M=abc,N=a2+b2+c2,则(  )
A、M<NB、M>N
C、M=ND、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+y2=5与抛物线y2=2px(p>0)在x轴上方交于A,B两点,
(1)求实数p的取值范围;
(2)若∠ACB=90°,求实数p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1+i)2006
(-
1
2
+
3
2
i)6
+
21003
i2015

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={2,3,5,7,11,13,17,19},A∩B={3,5},∁UA={7,19},求集合A、B.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
lg2
1
3
-4lg3+4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ex
1+ax
,其中a为正实数,若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在坐标轴上,与过点P(1,2)且斜率为-2的直线l相交所得的弦恰好被点P平分,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AC=AB=
2
,∠BAC=90°,且异面直线A1B与B1C1所成的角等于60°.
(Ⅰ)求棱柱的高;
(Ⅱ)求B1C1与平面A1BC1所成的角的大小.

查看答案和解析>>

同步练习册答案