精英家教网 > 高中数学 > 题目详情
已知圆C:(x-3)2+y2=5与抛物线y2=2px(p>0)在x轴上方交于A,B两点,
(1)求实数p的取值范围;
(2)若∠ACB=90°,求实数p的值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)圆C:(x-3)2+y2=5与抛物线y2=2px方程联立,可得:(x-3)2+2px=5,由△=(2p-6)2-16>0,可求实数p的取值范围;
(2)若∠ACB=90°,
CA
CB
=0
,利用数量积公式,结合韦达定理,即可求实数p的值.
解答: 解:(1)圆C:(x-3)2+y2=5与抛物线y2=2px方程联立,可得:(x-3)2+2px=5,
即x2+(2p-6)x+4=0,
∵圆C:(x-3)2+y2=5与抛物线y2=2px(p>0)在x轴上方交于A,B两点,
∴△=(2p-6)2-16>0,
∴p<1或p>5;
(2)设A(x1,y1),B(x2,y2)(y1>0,y2>0),则x1+x2=6-2p,x1x2=4,
∵∠ACB=90°,
CA
CB
=0

∴(x1-3,y1)•(x2-3,y2)=0,
∴(x1-3)(x2-3)+y1y2=0,
∴x1x2-3(x1+x2)+2p
x1x2
=0,
∴4-3(6-2p)+4p=0,
∴p=
7
5
点评:本题考查圆与抛物线的位置关系,考查向量知识的运用,考查韦达定理,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足f(1)=1,且对任意正整数n都有f(1)+f(2)+…+f(n)=n2f(n),则2015•f(2014)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分图象如图所示,则ω,φ的值分别为(  )
A、2,-
π
3
B、2,-
π
6
C、4,-
π
6
D、4,
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

A={x|-2≤x≤4} B={x|x>a}.
(1)如果A∩B≠A  求a的范围;
(2)如果A∩B≠∅且A∩B≠A 求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(tanx)=
1
sin2x•cos2x
,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈Z,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当a=2,b=
2
时,数列{bn}中的任意三项都不能构成等比数列;
(Ⅲ)设A={a1,a2,a3,…},B={b1,b2,b3,…},设C=A∩B.当b=1时,求出相应的集合C.

查看答案和解析>>

科目:高中数学 来源: 题型:

空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,其数值越大说明空气污染状况越严重,对人体健康的危害也就越大.根据国家标准,指数在0-50之间时,空气质量为优;在51-100之间时,空气质量为良;在101-150之间时,空气质量为轻度污染;在151-200之间时,空气质量为中度污染;在大于200时,空气质量为重度污染.环保部门对某市5月1日至5月15日空气质量指数预报如下表:
日  期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
空气质量指数 75 56 26 156 230 163 88 210 206 201 78 98 105 97 93
某人选择5月1日至5月13日某一天到达该市,并停留三天.
(Ⅰ)求此人到达当日空气重度污染的概率;
(Ⅱ)设X是此人停留期间空气质量优良的天数,求随机变量X的分布列及数学期望;
(Ⅲ)根据上表判断从哪天开始连续三天的空气质量指数方差最大(不要求计算,只写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点A﹙0,
7
3
﹚,B﹙7,0﹚的直线l1与过点C﹙2,1﹚,D﹙3,k+1)的直线l2和两坐标轴围成的四边形内接于一个圆,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

x
1
4
+1
x
1
2
+x
1
4
+1
-
x
1
4
-1
x
1
2
-x
1
4
+1
=
2
7
,求x的值.

查看答案和解析>>

同步练习册答案