精英家教网 > 高中数学 > 题目详情
15.在△ABC中,若a:b:c=7:8:13,则∠C=120°.

分析 根据边长关系设a=7x,b=8x,c=13x,(x>0).利用余弦定理求出cosC即可.

解答 解:∵a:b:c=7:8:13,
∴设a=7x,b=8x,c=13x,(x>0).
∴由余弦定理可得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{49{x}^{2}+64{x}^{2}-169{x}^{2}}{2×7×8{x}^{2}}$=$\frac{1}{2}$,
∵C∈(0°,180°),
∴C=120°,
故答案为:120°.

点评 本题主要考查余弦定理的应用,根据比例关系设出边长是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.求等比数列$\frac{2}{3}$,2,6,…的通项公式与第7项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=sinAsinC.
(1)若$a=\sqrt{2}b$,求cosA;
(2)若B=60°,且$a=\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.${({\sqrt{x}+1})^4}{({\sqrt{x}-1})^5}$的展开式中,x3的系数为(  )
A.-6B.-4C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设双曲线${x^2}-\frac{y^2}{24}=1$的两个焦点为F1,F2,P是双曲线上的一点,且|PF1|:|PF2|=3:4,则△PF1F2的面积等于(  )
A.18B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若变量x,y满足不等式组$\left\{\begin{array}{l}x≤1\\ x≥y\\ x+y+2≥0\end{array}\right.$,则(x,y)的整数解有(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,直棱柱ABCD-A1B1C1D1,底面ABCD是平行四边形,AA1=AB=B1D1=3,BC=2,E是边B1C1的中点,F是边CC1上的动点,
(1)当C1F=BC时,求证:BF⊥平面D1EF;
(2)若BE⊥EF,求三棱锥B-D1EF体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.为了确定学生的答卷时间,需要确定回答每道题所用的时间,为此进行了5次实验,根据收集到的数据,如表所示:
题数x(道)23456
所需要时间y(分钟)367811
由最小二乘法求得回归方程y=1.8x+a,则a的值为-0.2.
(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若0<a<1,b>0,且${a^b}+{a^{-b}}=2\sqrt{2}$,则ab-a-b等于(  )
A.$\sqrt{6}$B.2或-2C.-2D.2

查看答案和解析>>

同步练习册答案