精英家教网 > 高中数学 > 题目详情
17.执行如图所示的程序框图,则输出的s=(  )
A.6B.15C.25D.3

分析 模拟执行程序,依次写出每次循环得到的i,S的值,当i=4时,满足i>3,退出循环,输出S的值,即可得解.

解答 解:模拟执行程序,可得
s=1,i=1
s=1+1,i=2
不满足条件i>3,s=1+1+22,i=3
不满足条件i>3,s=1+1+22+32,i=4
满足条件i>3,退出循环,输出s=1+1+22+32=15.
故选:B.

点评 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某城市居民月生活用水收费标准为$W(t)=\left\{{\begin{array}{l}{1.6t,({0≤t<2})}\\{2.7t,({2≤t<3.5})}\\{4.0t,({3.5≤t≤4.5})}\end{array}}\right.$(t为用水量,单位:吨;W为水费,单位:元),从该市抽取100户居民的月均用水量的频率分布直方图如图所示. 

(Ⅰ)求这100户居民月均用水量的中位数及平均水费;
(Ⅱ)连续10个月,每月从这100户中随机抽取一户,若抽到的用户当月所交水费少于9.45元,则对其予以奖励.设X为获奖户数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,梯形ABCD中,AB∥CD,BC=6,tan∠ABC=-2$\sqrt{2}$.
(Ⅰ)若∠ACD=$\frac{π}{4}$,求AC的长;
(Ⅱ)若BD=9,求△BCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=Asin(2x+φ),其中A>0.
(1)若?x∈R,使f(x+a)-f(x)=2A成立,则实数a的最小值是$\frac{π}{2}$;
(2)若A=1,则f(x+$\frac{π}{6}$)-f(x)的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设(1-x)n=a0+a1x+a2x2+…+anxn,n∈N*,n≥2.
(1)设n=11,求|a6|+|a7|+|a8|+|a9|+|a10|+|a11|的值;
(2)设bk=$\frac{k+1}{n-k}$ak+1(k∈N,k≤n-1),Sm=b0+b1+b2+…+bm(m∈N,m≤n-1),求|$\frac{{S}_{m}}{{C}_{n-1}^{m}}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学至少有一名女同学的概率是$\frac{7}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U=R,P=(0,1],Q={x|2x≤1},则P∪Q=(  )
A.(-∞,1)B.(1,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知l,m,n是不同的直线,α,β,γ是不重合的平面,下列命题中正确的个数为(  )
①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β
③若m∥α,m∥β,则α∥β;④l∥α,m?α,则l∥m.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知i是虚数单位,则复数$\frac{5+3i}{4-i}$的共轭复数是(  )
A.1-iB.-1+iC.1+iD.-1-i

查看答案和解析>>

同步练习册答案