13£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬µãB£¨0£¬$\sqrt{3}$£©ÊÇÍÖÔ²EµÄÉ϶¥µã£¬F1£¬F2·Ö±ðÊÇÍÖÔ²EµÄ×ó¡¢ÓÒ½¹µã£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÒÑÖªMΪÍÖÔ²EÉϵ͝µã£¬ÈôÒÔµãMΪԲÐÄ£¬MF1Ϊ°ë¾¶µÄÔ²ÓëÍÖÔ²EµÄÓÒ×¼ÏßÓй«¹²µã£¬Çó¡÷F1MF2Ãæ»ýµÄ×î´óÖµ£»
£¨3£©¹ýµãB×÷Ö±Ïßl1£¬l2£¬Ê¹l1¡Íl2£¬ÉèÖ±Ïßl1£¬l2·Ö±ð½»ÍÖÔ²EÓÚµãP£¬Q£¬Á¬½ÓPQ£¬ÇóÖ¤£ºÖ±ÏßPQ±Ø¾­¹ýyÖáÉϵÄÒ»¸ö¶¨µã£®

·ÖÎö £¨1£©ÓÉe=$\frac{1}{2}=\frac{c}{a}$£¬b=$\sqrt{3}$£¬a2=b2+c2£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÓÉÍÖÔ²µÄµÚ¶þ¶¨Òå¿ÉÖª£º|MF1|=$\frac{1}{2}{x}_{0}$+2£®µãMµ½ÓÒ×¼ÏߵľàÀëd=4-x0£®¸ù¾Ý£ºÒÔµãMΪԲÐÄ£¬MF1Ϊ°ë¾¶µÄÔ²ÓëÍÖÔ²EµÄÓÒ×¼ÏßÓй«¹²µã£¬¿ÉµÃ|MF1|¡Ýd£¬µÃµ½x0µÄ×îСֵ£¬¼´¿ÉµÃµ½|y0|µÄ×î´óÖµ£¬¿ÉµÃ¡÷F1MF2Ãæ»ýµÄ×î´óÖµS=$\frac{1}{2}¡Á2c¡Á|{y}_{0}{|}_{max}$£®
£¨3£©ÉèÖ±ÏßBP¡¢BQµÄÖ±Ïß·½³Ì·Ö±ðΪ£ºy=kx+$\sqrt{3}$£¬y=-$\frac{1}{k}$x+$\sqrt{3}$£®·Ö±ðÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃµãP£¬QµÄ×ø±ê£¬ÀûÓõãбʽ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ße=$\frac{1}{2}=\frac{c}{a}$£¬b=$\sqrt{3}$£¬a2=b2+c2£¬ÁªÁ¢½âµÃ£ºc=1£¬a=2£¬b=$\sqrt{3}$£®
¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®
£¨2£©ÍÖÔ²µÄ×óÓÒ×¼Ïß·Ö±ðΪ£ºx=-4£¬x=4£¬F1£¨-1£¬0£©£¬ÉèM£¨x0£¬y0£©£®
ÓÉÍÖÔ²µÄµÚ¶þ¶¨Òå¿ÉÖª£º$\frac{|M{F}_{1}|}{{x}_{0}-£¨-4£©}=\frac{1}{2}$£¬»¯Îª£º$\frac{1}{2}{x}_{0}$+2£®
µãMµ½ÓÒ×¼ÏߵľàÀëd=4-x0£¬
¡ßÒÔµãMΪԲÐÄ£¬MF1Ϊ°ë¾¶µÄÔ²ÓëÍÖÔ²EµÄÓÒ×¼ÏßÓй«¹²µã£¬
¡à|MF1|¡Ýd£¬
¡à$\frac{1}{2}{x}_{0}$+2¡Ý4-x0£¬½âµÃ2¡Ý${x}_{0}¡Ý\frac{4}{3}$£®
¡à${y}_{0}^{2}$=3$£¨1-\frac{{x}_{0}^{2}}{4}£©$¡Ü$3¡Á[1-\frac{1}{4}¡Á£¨\frac{4}{3}£©^{2}]$=$\frac{5}{3}$£¬
È¡|y0|µÄ×î´óÖµ$\sqrt{\frac{5}{3}}$£®
¡à¡÷F1MF2Ãæ»ýµÄ×î´óÖµS=$\frac{1}{2}¡Á2c¡Á|{y}_{0}{|}_{max}$=1¡Á$\sqrt{\frac{5}{3}}$=$\frac{\sqrt{15}}{3}$£®
£¨3£©Ö¤Ã÷£ºÉèÖ±ÏßBP¡¢BQµÄÖ±Ïß·½³Ì·Ö±ðΪ£ºy=kx+$\sqrt{3}$£¬y=-$\frac{1}{k}$x+$\sqrt{3}$£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬»¯Îª£º£¨3+4k2£©x2+8$\sqrt{3}$kx=0£¬¿ÉµÃxP=-$\frac{8\sqrt{3}k}{3+4{k}^{2}}$£¬yP=$\frac{-4\sqrt{3}{k}^{2}+3\sqrt{3}}{3+4{k}^{2}}$£®
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{1}{k}x+\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬¿ÉµÃ£ºxQ=$\frac{8\sqrt{3}k}{3{k}^{2}+4}$£¬yQ=$\frac{3\sqrt{3}{k}^{2}-4\sqrt{3}}{3{k}^{2}+4}$£®
¡àÖ±ÏßPQµÄ·½³ÌΪ£ºy-$\frac{3\sqrt{3}{k}^{2}-4\sqrt{3}}{3{k}^{2}+4}$=$\frac{3£¨{k}^{2}-1£©}{7k}$$£¨x-\frac{8\sqrt{3}k}{3{k}^{2}+4}£©$£¬
Áîx=0£¬¿ÉµÃy=$-\frac{\sqrt{3}}{7}$£®
¡àÖ±ÏßPQ±Ø¾­¹ýyÖáÉϵÄÒ»¸ö¶¨µã$£¨0£¬-\frac{\sqrt{3}}{7}£©$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ï໥´¹Ö±µÄÖ±ÏßбÂÊÖ®¼äµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®$\frac{7}{16}$-$\frac{7}{8}$sin215¡ãµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{7}{32}$B£®$\frac{7\sqrt{3}}{32}$C£®$\frac{7}{16}$D£®$\frac{7\sqrt{3}}{16}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬Ö±Ïßl£ºy=x+2$\sqrt{5}$ÓëÍÖÔ²ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¹ýÔ­µãO×÷Ö±Ïß·Ö±ð½»ÍÖÔ²CÓÚM¡¢NÁ½µã£¬¹ýÔ­µãO×÷OP¡ÍMN£¬½»ÍÖÔ²ÓÚP£¬Çó¡÷PMNÃæ»ýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÖÐÐÄ£¬ÓÒ½¹µãºÍÓÒ¶¥µã·Ö±ðΪO£¬F£¬A£¬ÓÒ×¼ÏßÓëxÖáµÄ½»µãΪH£¬Ôò$\frac{FA}{OH}$µÄ×î´óֵΪ$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªµãPÊÇÍÖÔ²$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1ÉÏÒ»µã£¬F1¡¢F2ÊÇÍÖÔ²µÄÁ½¸ö½¹µã£¬Èô|PF1|=4£¬Ôò|PF2|=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®3${\;}^{lo{g}_{3}5}$+£¨2005£©0-£¨$\frac{1}{4}$£©${\;}^{-\frac{1}{2}}$+sin$\frac{7¦Ð}{6}$=$\frac{7}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®»¯¼òÇóÖµ£º
£¨1£©$\sqrt{3+2\sqrt{2}}$+$\sqrt{12-6\sqrt{3}}$-$\sqrt{6+4\sqrt{2}}$£»
£¨2£©2$\sqrt{3}$¡Á$\root{3}{1.5}$¡Á$\root{6}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÇóÖ±Ïßx-2y-6=0µÄбÂʺÍÔÚxÖá¡¢yÖáÉϵĽؾ࣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{x+1£¬-1£¼x£¼0}\\{{x}^{2}£¬0¡Üx¡Ü5}\end{array}\right.$£¬Ôòf£¨x£©µÄ¶¨ÒåÓòÊÇ{x|-1£¼x¡Ü5}£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸