分析 (1)由a5+a6=S6-S4代入公式即可求得,再由an=$\left\{\begin{array}{l}{{s}_{n},n=1}\\{{s}_{n}-{s}_{n-1},n≥2}\end{array}\right.$求an即可;
(2)由an=$\left\{\begin{array}{l}{{s}_{n},n=1}\\{{s}_{n}-{s}_{n-1},n≥2}\end{array}\right.$求an即可.
解答 解:(1)a5+a6=S6-S4
=(-1)6+1•6-(-1)4+1•4
=-6+4=-2;
当n=1时,a1=S1=(-1)1+1•1=1,
当≥2时,an=Sn-Sn-1=(-1)n+1•n-(-1)n•(n-1)
=(-1)n•(-n-n+1)
=(-1)n•(-2n+1);
a1=1也满足an=(-1)n•(-2n+1);
故an=(-1)n•(-2n+1);
(2)当n=1时,a1=S1=31+2+1=6,
当≥2时,an=Sn-Sn-1=3n+2n+1-(3n-1+2(n-1)+1)
=2•3n-1+2;
a1=6不满足an=2•3n-1+2;
故an=$\left\{\begin{array}{l}{6,n=1}\\{2•{3}^{n-1}+2,n≥2}\end{array}\right.$.
点评 本题考查了前n项和与通项公式的关系应用,同时考查了分类讨论的思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com