【题目】已知椭圆
的左右焦点分别为
和
,由4个点
、
、
和
组成了一个高为
,面积为
的等腰梯形.
(1)求椭圆的方程;
(2)过点
的直线和椭圆交于两点
、
,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】据《人民网》报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的
来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)
单位:公顷
地区 | 造林总面积 | 造林方式 | ||||
人工造林 | 飞播造林 | 新封山育林 | 退化林修复 | 人工更新 | ||
内蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 13507 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 22417 | 15376 | 133 |
重庆 | 226333 | 100600 | 62400 | 63333 | ||
陕西 | 297642 | 184108 | 33602 | 63865 | 16067 | |
甘肃 | 325580 | 260144 | 57438 | 7998 | ||
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | 159734 | 2629 | ||
宁夏 | 91531 | 58960 | 22938 | 8298 | 1335 | |
北京 | 19064 | 10012 | 4000 | 3999 | 1053 | |
(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;
(2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过
的概率;
(3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,右焦点到直线
的距离为
.
(1)求椭圆
的方程;
(2)过点
作与坐标轴不垂直的直线
与椭圆
交于
,
两点,在
轴上是否存在点
,使得
为正三角形,若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图象向左平移
个单位,然后纵坐标不变,横坐标变为原来的
倍,得到
的图象,下面四个结论正确的是( )
A. 函数
在区间
上为增函数
B. 将函数
的图象向右平移
个单位后得到的图象关于原点对称
C. 点
是函数
图象的一个对称中心
D. 函数
在
上的最大值为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(x>0).
(1)若a=1,f(x)在(0,+∞)上是单调增函数,求b的取值范围;
(2)若a≥2,b=1,求方程
在(0,1]上解的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知梯形
中,
,
,
,四边形
为矩形,
,平面
平面
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求平面
与平面
所成锐二面角的余弦值;
(Ⅲ)在线段
上是否存在点
,使得直线
与平面
所成角的正弦值为
,若存在,求出线段
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.
![]()
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(1)求图中
的值;
(2)根据已知条件完成下面
列联表,并判断能否有
的把握认为“晋级成功”与性别有关?
(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为
,求
的分布列与数学期望
.
(参考公式:
,其中
)
| 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中心在原点,焦点在
轴上的椭圆,下顶点
,且离心率
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)经过点
且斜率为
的直线
交椭圆于
,
两点.在
轴上是否存在定点
,使得
恒成立?若存在,求出点
坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com