【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.
![]()
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(1)求图中
的值;
(2)根据已知条件完成下面
列联表,并判断能否有
的把握认为“晋级成功”与性别有关?
(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为
,求
的分布列与数学期望
.
(参考公式:
,其中
)
| 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【答案】(1)
;(2)列联表见解析,有超过
的把握认为“晋级成功”与性别有关;(3)分布列见解析,
=3
【解析】
(1)由频率和为1,列出方程求
的值;
(2)由频率分布直方图求出晋级成功的频率,计算晋级成功的人数,
填写
列联表,计算观测值,对照临界值得出结论;
(3)由频率分布直方图知晋级失败的频率,将频率视为概率,
知随机变量
服从二项分布,计算对应的概率值,写出分布列,计算数学期望.
解:(1)由频率分布直方图各小长方形面积总和为1,
可知
,
解得
;
(2)由频率分布直方图知,晋级成功的频率为
,
所以晋级成功的人数为
(人),
填表如下:
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | 34 | 50 |
女 | 9 | 41 | 50 |
合计 | 25 | 75 | 100 |
假设“晋级成功”与性别无关,
根据上表数据代入公式可得
,
所以有超过
的把握认为“晋级成功”与性别有关;
(3)由频率分布直方图知晋级失败的频率为
,
将频率视为概率,
则从本次考试的所有人员中,随机抽取1人进行约谈,这人晋级失败的概率为0.75,
所以
可视为服从二项分布,即
,
![]()
,
故
,
,
,
,
.
所以
的分布列为:
| 0 | 1 | 2 | 3 | 4 |
|
|
|
|
|
|
数学期望为
.或(
).
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在R上的奇函数,当
时,
,给出下列命题:
①当
时,
;
②函数
有2个零点;
③
的解集为
;
④
,
,都有
.
其中真命题的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
和
,由4个点
、
、
和
组成了一个高为
,面积为
的等腰梯形.
(1)求椭圆的方程;
(2)过点
的直线和椭圆交于两点
、
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】人们随着生活水平的提高,健康意识逐步加强,健身开始走进人们生活,在健身方面投入越来越多,为了调查参与健身的年轻人一年健身的花费情况,研究人员在
地区随机抽取了参加健身的青年男性、女性各50名,将其花费统计情况如下表所示:
分组(花费) | 频数 |
| 6 |
| 22 |
| 25 |
| 35 |
| 8 |
| 4 |
男性 | 女性 | 合计 | |
健身花费不超过2400元 | 23 | ||
健身花费超过2400元 | 20 | ||
合计 |
(1)完善二联表中的数据;
(2)根据表中的数据情况,判断是否有99%的把握认为健身的花费超过2400元与性别有关;
(3)求这100名被调查者一年健身的平均花费(同一组数据用该区间的中点值代替).
附:![]()
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.01 |
k | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对任意的实数k,b,函数
与直线
总相切,则称函数
为“恒切函数”.
(1)判断函数
是否为“恒切函数”;
(2)若函数
是“恒切函数”,求实数m,n满足的关系式;
(3)若函数
是“恒切函数”,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,已知直线l过点P(2,2).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ﹣ρcos2θ﹣4cosθ=0.
(1)求C的直角坐标方程;
(2)若l与C交于A,B两点,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com