精英家教网 > 高中数学 > 题目详情
解分式方程:
2x
x+2
-
3
x-2
=2.
考点:函数的零点与方程根的关系
专题:计算题
分析:将原分式方程进行移项,通分并化简得:
-7x+2
(x+2)(x-2)
=0
,所以容易解出x=
2
7
解答: 解:原方程变成:
-7x+2
(x+2)(x-2)
=0

∴解得x=
2
7
点评:考查分式方程的求解办法:通分,将分式方程变成整式方程求解即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax,把函数f(x)的图象向左平移1个单位,得到函数y=g(x)的图象.
(1)若g(x)为偶函数,求实数a的值;
(2)若2f(x)-g(x)+2(x-a)>0对于x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+2mcosx+4m-1,m∈R.
(1)当m=
1
2
时,求函数的最值并求出对应的x值;
(2)如果对于区间(-
π
2
π
2
]上的任意一个x,都有f(x)≤5恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
a
b
a
=(sinx,cosx),
b
=(cos(x+
π
3
),sin(x+
π
3
)).
(1)求f(
25
6
π)的值;
(2)设α∈(0,π),f(
α
2
)=
2
2
,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x+y≥0
x-y+m≥0
x≤1
,若此不等式组表示的平面区域的面积为9,则实数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-(k2+k+1)x+15,g(x)=k2x-k,其中k∈R.
(1)若f(x)+g(x)≥0,对x∈[1,4)恒成立,求实数k的取值范围;
(2)设函数q(x)=
g(x),x≥0
f(x),x<0
是否存在实数k,对任意给定的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得q(x2)=q(x1)?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,过点F的直线交椭圆于A,B两点.|AF|的最大值是M,|BF|的最小值是m,满足M•m=
3
4
a2
(1)求该椭圆的离心率;
(2)设线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点.记△GFD的面积为S1,△OED的面积为S2,求
S1
S2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-a|(x∈R,a∈R).
(Ⅰ)当a=2时,求f(x)的单调区间;
(Ⅱ)若f(x)<10对x∈(-1,3)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,设P:当0<x<
1
2
时,不等式f(x)+3<2x+a恒成立;Q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩∁RB(R为全集).

查看答案和解析>>

同步练习册答案