精英家教网 > 高中数学 > 题目详情
20.已知直线m,l,平面α,β,且m⊥α,l?β,给出下列命题:
①若α∥β,则m⊥l;  ②若α⊥β,则m∥l;  ③若m⊥l,则α⊥β;④若m∥l,则α⊥β.  
其中正确的命题的个数是(  )
A.1B.2C.3D.4

分析 根据有关定理中的诸多条件,对每一个命题进行逐一进行是否符合定理条件去判定,将由条件可能推出的其它的结论也列举出来.

解答 解:若α∥β,且m⊥α⇒m⊥β,又l?β⇒m⊥l,所以①正确.
若α⊥β,且m⊥α⇒m∥β,又l?β,则m与l可能平行,可能异面,所以②不正确.
若m⊥l,且m⊥α,l?β⇒α与β可能平行,可能相交.所以③不正确.
若m∥l,且m⊥α⇒l⊥α又l?β⇒α⊥β,∴④正确.
故选:B.

点评 本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=8,P是双曲线右支上的一点,直线F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=2,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=|x+a|+|x-2|
①当a=-3时,求不等式f(x)≥3的解集;
②f(x)≤|x-4|若的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设等差数列{an}满足a1=1,an>0(n∈N*),其前n项和为Sn,若数列{$\sqrt{{S}_{n}}$}也为等差数列,则$\frac{{S}_{n+10}}{{{a}_{n}}^{2}}$的最大值是(  )
A.310B.212C.180D.121

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足a1=0,an+1=an+$\frac{1}{n(n+1)}+1$
(1)证明数列{an+$\frac{1}{n}$}是等差数列,并求数列{an}的通项公式;
(2)设数列{$\frac{{a}_{n}}{n}$}的前n项和为Sn,证明Sn$<\frac{{n}^{2}}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=a+\frac{4}{5}t}\\{y=-a-\frac{3}{5}t}\end{array}\right.$ (t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程为ρ=2cosθ,若直线l平分圆C的周长,则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式2|x|-1>a(x2-1)对满足-1≤a≤1的所有a都成立,则x的取值范围是-2<x<1-$\sqrt{3}$或$\sqrt{3}<x<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知实数a,b,c满足a<b<c,$\left\{\begin{array}{l}{a+b+c=6}\\{ab+bc+ca=9}\end{array}\right.$.
(1)(b-5)(c-5)的最小值是$\frac{15}{4}$;
(2)下列命题中:①0<a<1,②1<b<3,③3<c<4,其中真命题的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设抛物线y2=4x上一点P到直线x=-3的距离为5,则点P到该抛物线焦点的距离是3.

查看答案和解析>>

同步练习册答案