精英家教网 > 高中数学 > 题目详情
11.已知在△ABC中,边长a=$\sqrt{3}$,b=1,且∠A=60°,那么△ABC的面积为$\frac{\sqrt{3}}{2}$.

分析 由已知利用正弦定理可求sinB=$\frac{b•sinA}{a}$=$\frac{1}{2}$,结合大边对大角B,利用三角形内角和定理可求C,根据三角形面积公式即可求解.

解答 解:∵a=$\sqrt{3}$,b=1,且∠A=60°,
∴sinB=$\frac{b•sinA}{a}$=$\frac{1×sin60°}{\sqrt{3}}$=$\frac{1}{2}$,
∵a=$\sqrt{3}$>b=1,B为锐角,可解得B=30°,C=180°-A-B=90°,
∴S△ABC=$\frac{1}{2}$ab=$\frac{1}{2}×1×\sqrt{3}$=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题主要考查了正弦定理,大边对大角,三角形内角和定理,三角形面积公式等知识的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.全集是{1、2、3、4、5、6},A={1、2、3、a},B={3、4、5},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.10张奖券中含有3张中奖劵,每人购买1张,则前3个购买者中,恰有1人中奖的概率为(  )
A.${C}_{10}^{3}×{0.7}^{2}×0.3$B.${C}_{3}^{1}$×0.72×0.3
C.$\frac{3}{10}$D.$\frac{3{A}_{7}^{2}{A}_{3}^{1}}{{A}_{10}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式x2+2x<$\frac{a}{b}$+$\frac{16b}{a}$对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是(-4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\sqrt{2}$cosxsin(x-$\frac{π}{4}$).
(1)求f($\frac{π}{3}$)的值与函数f(x)的最小正周期;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知(x+3)3+2015(x+3)+(2y-3)3+2015(2y-3)=0,求x2+4y2+4x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数的导数:y=ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)的定义域为R,若对任意实数x,y∈R,都有f(x)+f(y)=2f(x2-y2),且f(x)在[0,+∞)上为增函数.
(1)求证:f(x)为偶函数;
(2)若f(a-2)-f(4-a)<0,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在数列{an}中,a1=2,n2an=(n2-1)an-1(n≥2),则a10=$\frac{11}{10}$.

查看答案和解析>>

同步练习册答案