精英家教网 > 高中数学 > 题目详情
13.函数f(x)=sin($\frac{π}{4}$-x)cos($\frac{π}{4}$+x)的单调递增区间是(  )
A.[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈ZB.[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z
C.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈ZD.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z

分析 利用诱导公式将f(x)化简,根据函数的单调性即可求得函数的单调区间.

解答 解:f(x)=sin($\frac{π}{4}$-x)cos($\frac{π}{4}$+x)=cos[$\frac{π}{2}$-($\frac{π}{4}$-x)]cos($\frac{π}{4}$+x),
=cos2($\frac{π}{4}$+x),
=$\frac{1}{2}$cos2($\frac{π}{4}$+x)+$\frac{1}{2}$;
=$\frac{1}{2}$-$\frac{1}{2}$sin2x,
依题意知,2kπ+$\frac{π}{2}$≤2x≤2kπ+$\frac{3π}{2}$,k∈Z,
解得:x∈[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z,
故选:D.

点评 本题考查三角恒等变换及函数的单调区间,要求学生熟练诱导公式及函数图象,考查学生分析问题和解决问题得能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知(1-2x)7=a0+a1x+a2x2+…+a7x7,(a0+a2+a4+a62-(a1+a3+a5+a72值为-2187.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$在同一平面内,且$\overrightarrow a=(-1,2)$.
(1)若$\overrightarrow c=(m-1,3m)$,且$\overrightarrow c∥\overrightarrow a$,求m的值;
(2)若|$\overrightarrow a-\overrightarrow b|=3$,且$(\overrightarrow a+2\overrightarrow b)⊥(2\overrightarrow a-\overrightarrow b)$,求向量$\overrightarrow a-\overrightarrow b$与$\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某次考试的第一大题是由10个判断题组成,每个判断题做对得2分,不做或做错得0分.小明做对每一题的概率为$\frac{3}{4}$,则小明第一大题得分的方差是$\frac{15}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,BC边上的高为$\frac{\sqrt{3}}{6}$BC,则$\frac{sinC}{sinB}$+$\frac{sinB}{sinC}$的最大值为(  )
A.4B.5C.6D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.对于数列{an},定义数列{an+1-an}的数列{an}的“差数列”,若a1=2,{an}的“差数列”的通项公式为2n
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求S1+2S2+…+nSn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解不等式:3${A}_{8}^{n}$<4${A}_{9}^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{m\sqrt{x}+lnx}{x}$(x>0),m∈R.
(1)若函数f(x)的图象与x轴存在交点,求m的最小值.
(2)若函数f(x)的图象在点(1,f(1))处的切线的斜率为$\frac{1}{2}$,且函数f(x)的最大值为M,求证:1<M<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a=2${\;}^{\frac{1}{5}}$,b=5${\;}^{-\frac{1}{2}}$,c=$\frac{1}{2}$${∫}_{0}^{\frac{π}{2}}$cosxdx,则实数a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

同步练习册答案