精英家教网 > 高中数学 > 题目详情
8.求下列函数的值域:
(1)y=$\frac{2x-1}{x+1}$;
(2)y=-x2+2x+3 x∈(-3,0].

分析 (1)根据分式函数的性质进行求解.
(2)根据一元二次函数的性质进行求解.

解答 解:(1)y=$\frac{2x-1}{x+1}$=$\frac{2(x+1)-3}{x+1}$=2-$\frac{3}{x+1}$≠2,
则函数的值域为(-∞,2)∪(2,+∞);
(2)y=-x2+2x+3=-(x-1)2+4,
∵x∈(-3,0].
∴此时函数为增函数,
则-12<y≤3,
即函数的值域为(-12,3].

点评 本题主要考查函数值域的求解,根据分式函数和一元二次函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若θ是第四象限角,且|cos$\frac{θ}{2}$|=-cos$\frac{θ}{2}$,则$\frac{θ}{2}$是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线l:y=k(x+2)被圆O:x2+y2=4截得弦长为2,则k值是±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正四棱锥的所有棱长都相等,那么该四棱锥的内切球与外接球的表面积之比为(  )
A.$\frac{1}{4}$B.$\frac{4}{9}$C.$\frac{\sqrt{3}-1}{2}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{1}{1+\frac{1}{x}}$的定义域是(-∞,-1)∪(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,求$\frac{tan(-α-π)sin(π+α)sin(\frac{π}{2}+α)}{cos(-α)cos(α-\frac{π}{2})}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等比数列{an}各项均为正数,首项a1=3,前三项的和为21,求a3+a4+a5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+ax,(x≤-1),且f(x)具有反函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$g(x)=2sin(2ωx+\frac{π}{6})$(其中0<ω<1),若点$(-\frac{π}{6},0)$是函数g(x)图象的一个对称中心,
(1)试求ω的值;
(2)若f(x)=g(x)+1,请先列表再作出函数f(x)在区间x∈[-π,π]上的图象.

查看答案和解析>>

同步练习册答案