精英家教网 > 高中数学 > 题目详情
18.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,E、F分别是A1B,AC1的中点.
(1)求证:平面AEF⊥平面AA1B1B;
(2)若A1A=2AB=2BC=4,求三棱锥F-ABC的体积.

分析 (1)连结A1F,则F为A1C的中点,于是EF∥BC,通过证明BC⊥平面ABB1A1得出EF⊥平面ABB1A1,故而平面AEF⊥平面AA1B1B;
(2)F到平面ABC的距离为$\frac{1}{2}$AA1=2,代入棱锥的体积公式计算即可.

解答 (1)证明:连结A1F,则F为A1C的中点,
又E是A1B的中点,
∴EF∥BC,
∵AA1⊥平面ABC,BC?平面ABC,
∴AA1⊥BC,
又BC⊥AB,AB∩AA1=A,
∴BC⊥平面ABB1A1
∴EF⊥平面ABB1A1
又EF?平面AEF,
∴平面AEF⊥平面ABB1A1
(2)解:∵F是A1C的中点,
∴F到平面ABC的距离d=$\frac{1}{2}$AA1=2,
∴VF-ABC=$\frac{1}{3}{S}_{△ABC}•d$=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$.

点评 本题考查了面面垂直的判定,棱锥的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若函数y=ksin(kx+φ)($k>0,|φ|<\frac{π}{2}$)与函数y=kx-k2+6的部分图象如图所示,则函数f(x)=sin(kx-φ)+cos(kx-φ)图象的一条对称轴的方程可以为(  )
A.$x=-\frac{π}{24}$B.$x=\frac{13π}{24}$C.$x=\frac{7π}{24}$D.$x=-\frac{13π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,正三角形ABC所在平面与梯形BCDE所在平面垂直,BE∥CD,BE=2CD=4,BE⊥BC,F为棱AE的中点.
(1)求证:直线AB⊥平面CDF;
(2)若异面直线BE与AD所成角为450,求二面角B-CF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|-1<x<3},B={x|x2+x-2>0},则A∩B=(  )
A.(2,3)B.(1,3)C.(-∞,-2)∪(1,3)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC的内角A、B、C的对边分别是a,b,c,且asinA-csinC=(a-b)sinB,c=3.则△ABC面积的最大值为(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{9\sqrt{3}}{8}$D.$\frac{9\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.将10个志愿者名额分配给4个学校,要求每校至少有一个名额,则不同的名额分配方法共有84种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若等差数列{an}满足a3=5,a10=-9.则{an}的通项公式an=11-2n;使得前n项和Sn最大的序号n的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线(a+1)x-y+1-2a=0与(a2-1)x+(a-1)y-15=0平行,则实数a的值等于(  )
A.1或-1B.1C.-1D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$|\overrightarrow a|=3$,与$\overrightarrow a$共线的单位向量为±$\frac{\overrightarrow{a}}{3}$.

查看答案和解析>>

同步练习册答案