精英家教网 > 高中数学 > 题目详情
17.在△ABC中,角A,B,C的对边分别为a,b,c,若b=4,a+c=8,且A,B,C成等差数列,求a,c的值.

分析 A,B,C成等差数列,可得:2B=A+C,A+B+C=π,B=$\frac{π}{3}$.由余弦定理可得:b2=a2+c2-2accosB,与a+c=8联立解出即可得出.

解答 解:∵A,B,C成等差数列,∴2B=A+C,A+B+C=π,∴B=$\frac{π}{3}$.
在△ABC中,由余弦定理可得:b2=a2+c2-2accosB,
∴42=(a+c)2-2ac-2ac$cos\frac{π}{3}$,∴82-3ac=16,可得ac=16.
联立$\left\{\begin{array}{l}{ac=16}\\{a+c=8}\end{array}\right.$,解得a=c=4.

点评 本题考查了等差数列的性质、余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(2x+1,4),$\overrightarrow{b}$=(2-x,3),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数x的值为(  )
A.$-\frac{1}{6}$B.$-\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.幂函数y=x${\;}^{-\frac{2}{5}}$的定义域为(-∞,0)∪(0,+∞)(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)(x∈R)是以2为周期的奇函数,当x∈(0,1)时,f(x)=2x,则f(${log}_{\frac{1}{2}}$23)的值是-$\frac{23}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和Sn满足:Sn=2an-n(n∈N*).
(1)证明数列{an+1}是等比数列,并求出数列{an}的通项公式;
(2)若数列{bn}满足bn=log2(an+1),求数列{$\frac{{b}_{n}}{{a}_{n}+1}$}的前n项和Tn,并证明:$\frac{1}{2}$≤Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数y=4sin2x(x∈R)的图象可以由函数y=sinx通过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(1一2x)5(2+x)2的展开式中x3的项的系数是-170.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l经过点A(2,1),B(m2+1,2),
(1)求直线l的方程;
(2)求直线l的倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC与F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2所示
(Ⅰ) 求证:平面AEF⊥平面BCD;
(Ⅱ) 在线段AF上是否存在点M使得EM∥平面ADC?若存在,请指明点M的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案