【题目】在三棱锥
中,
点
分别是
的中点,
底面ABC,则直线
与平面
所成角的正弦值为( )
A.
B.
C.
D.![]()
【答案】D
【解析】
首先利用三垂线定理作出直线OD与平面PBC所成角,就是取BC中点E,连接PE,则BC⊥平面POE作OF⊥PE于F,连接DF,得到OF⊥平面PBC,然后解三角形求出角即可.
∵AB⊥BC,OA=OC,∴OA=OB=OC,
又∵OP⊥平面ABC
∴PA=PB=PC.取BC中点E,连接PE,则BC⊥平面POE,BC
面PBC,∴面PBC⊥平面POE,又面PBC
平面POE=PE,
∴在面POE中作OF⊥PE于F,连接DF,则OF⊥平面PBC
∴∠ODF是OD与平面PBC所成的角.
设AB=BC=1,PA=2,
在Rt△POC中,PO
,在Rt△POC中,D是PC的中点,PC=2,
∴OD=1,在Rt△POE中,OE
,PE
,OF
,
在Rt△ODF中,sin∠ODF![]()
故选:D.
![]()
科目:高中数学 来源: 题型:
【题目】如图,公路
围成的是一块顶角为
的角形耕地,其中
,在该块土地中
处有一小型建筑,经测量,它到公路
的距离分别为
,现要过点
修建一条直线公路
,将三条公路围成的区域
建成一个工业园.
![]()
(1)以
为坐标原点建立适当的平面直角坐标系,并求出
点的坐标;
(2)三条公路围成的工业园区
的面积恰为
,求公路
所在直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程与曲线
直角坐标方程;
(2)设
为曲线
上的动点,求点
到
上点的距离的最小值,并求此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图表示一位骑自行车者和一位骑摩托车者在相距
的两城镇间旅行的函数图象,由图,可知骑自行车者用了
,沿途休息了
,骑摩托车者用了
,根据这个图象,提出关于这两个旅行者的如下信息:
![]()
①骑自行车者比骑摩托车者早出发
,晚到
;
②骑自行车者是变速运动,骑摩托者是匀速运动;
③骑摩托车者在出发了
后,追上了骑自行车者.
其中正确信息的序号是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,a1=2,a2=4,且当n≥2时,an2=an-1an+1,
;
(1)求数列{an}的通项公式an;
(2)若bn=(2n-1)an,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】成语“半斤八两”意思是一个半斤,一个八两,“半斤”是指用“十两秤”来称某种物体的重量,“八两”是指用“十六两秤”来称该物体的重量为八两,比喻彼此一样,不相上下.成语出自宋·无名氏《张协状元》戏文第28出:“两个半斤八两,各家归去不须嗔.”事实上“十六两秤”是我国古代曾经使用非常广泛的一种称重衡器,秤杆上一两一星,每斤共计16克星,分别代表北斗七星、南斗六星和福禄寿.买卖交易时,短1两“减福”,短2两“亏禄”,缺3两“折寿”,商家以“货真价实,童叟无欺”自律.“十六两秤”的计数采用的是十六进制,即“逢十六进一”,若用A表示10,那么
转换为十进制为______.(用数字作答)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在自然数列中由1开始依次按如下规则将某些数染成红色.先染1;再染两个偶数2,4;再染4后最邻近的三个连续奇数5,7,9;再染9后最邻近的四个连续偶数10,12,14,16;再染此后最邻近的五个连续奇数17,19,21,23,25.按此规则一直染下去,得一红色子列1,2,4,5,7,9,10,12,14,16,17,….则红色子列中由1开始数起的第1996个数是_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com