精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
某汽车驾驶学校在学员结业前对其驾驶技术进行4次考核,规定:按顺序考核,一旦考核合格就不必参加以后的考核,否则还需参加下次考核,若小张参加每次考核合格的概率依次组成一个公差为的等差数列,他参加第一次考核合格的概率超过,且他直到参加第二次考核才合格的概率为
(I)求小张第一次参加考核就合格的概率P1
(Ⅱ)求小张参加考核的次数和分布列和数学期望值
(I)
(Ⅱ)的分布列为

1
2
3
4
P




解:(I)由题意得

   …………4分
(II)由(I)知小张4次考核每次合格的概率依次为
,所以

所以的分布列为

1
2
3
4
P




…………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某大学毕业生响应国家号召,到某村参加村委会主任应聘考核。考核依次分为笔试、面
试.试用共三轮进行,规定只有通过前一轮考核才能进入下一轮考核,否则将被淘汰,
三轮考核都通过才能被正式录用。设该大学毕业生通过三轮考核的概率分别为, 且各轮考核通过与否相互独立。
(Ⅰ)求该大学毕业生未进入第三轮考核的概率;
(Ⅱ)设该大学毕业生在应聘考核中考核次数为ξ,求ξ的数学期望和方差。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文科做)
设集合,且满足, 若
(Ⅰ) 求b = c的概率;
(Ⅱ)求方程有实根的概率

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知8个球队中有3个弱队,以抽签方式将这8个球队分为A、B两组,每组4个.求
(Ⅰ)A、B两组中有一组恰有两个弱队的概率;
(Ⅱ)A组中至少有两个弱队的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)在某校组织的一次篮球定点投篮训练中,规定每人最多投次;在处每投进一球得分,在处每投进一球得分;如果前两次得分之和超过分即停止投篮,否则投第三次,某同学在处的命中率,在处的命中率为,该同学选择先在处投一球,以后都在处投,用表示该同学投篮训练结束后所得的总分,其分布列为
           
0          
2             
   3   
   4   
   5   
        p        
0.03          
   P1              
   P2        
P3          
P4              
(1)求的值;    
(2)求随机变量的数学期望E

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
为了收集2009年7月“长江日全食”天象的有关数据,国家天文台在成都、武汉各设置了A、B两个最佳观测站,共派出11名研究员分别前往两地实地观测。原计划向成都派出3名研究员去A观测站,2名研究员去B观测站;向武汉派出3名研究员去A观测站,3名研究员去B观测站,并都已指定到人。由于某种原因,出发前夕要从原计划派往成都的5名研究员中随机抽调1人改去武汉,同时,从原计划派往武汉的6名研究员中随机抽调1人改去成都,且被抽调的研究员仍按原计划去A观测站或B观测站工作。求:
(I)派往两地的A、B两个观测站的研究员人数不变的概率;
(II)在成都A观测站的研究员从数X的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了迎接2009年10月1日建国60周年,某城市为举办的大型庆典活动准备了四种保证安全的方案,列表如下:
方案
A
B
C
D
经费
300万元
400万元
500万元
600万元
安全系数
0.6
0.7
0.8
0.9
其中安全系数表示实施此方案能保证安全的系数,每种方案相互独立,每种方案既可独立用,又可以与其它方案合用,合用时,至少有一种方案就能保证整个活动的安全。
(I)若总经费在1200万元内(含1200万元),如何组合实施方案可以使安全系数最高?
(II)要保证安全系数不小于0.99,至少需要多少经费?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)某购物广场拟在五一节举行抽奖活动,规则是:从装有编号为0,1,2,3四个小球的抽奖箱中同时抽出两个小球,两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。
现设,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令

是对两次排序的偏离程度的一种描述。
  (Ⅰ)写出的可能值集合;
(Ⅱ)假设等可能地为1,2,3,4的各种排列,求的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中,都有
(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);
(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。

查看答案和解析>>

同步练习册答案