精英家教网 > 高中数学 > 题目详情
在平面直角坐标系内有两个定点F1、F2和动点P,F1、F2坐标分别为F1(-1,0)、F2(1,0),动点P满足
|PF1|
|PF2|
=
2
2
,动点P的轨迹为曲线C,曲线C关于直线y=x的对称曲线为曲线C′.
(1)求曲线的C′方程;
(2)若直线y=x+m-3与曲线C′交于A、B两点,D的坐标为(0,-3),△ABD的面积为
7
,求m的值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)设P点坐标为(x,y),则
(x+1)2+y2
(x-1)2+y2
=
2
2
,由此能求出曲线C'的方程.
(2)该圆的圆心为D(0,-3),到直线y=x+m-3的距离d为
|m|
2
,由),△ABD的面积为
7
,能求出m的值.
解答: 解:(1)设P点坐标为(x,y),
(x+1)2+y2
(x-1)2+y2
=
2
2

化简得(x+3)2+y2=8,
所以曲线C的方程为(x+3)2+y2=8;…(4分)
曲线C是以(-3,0)为圆心,2
2
为半径的圆,
曲线C'也应该是一个半径为2
2
的圆,
点(-3,0)关于直线y=x的对称点的坐标为(0,-3),
所以曲线C'的方程为x2+(y+3)2=8.…(7分)
(2)该圆的圆心为D(0,-3),
到直线y=x+m-3的距离d为d=
|0-(-3)+m-3|
12+(-1)2
=
|m|
2
,…(9分)S△ABO=
1
2
×d×|AB|=
1
2
×d×2
8-d2
=
(8-
m2
2
m2
2
=
7
…(11分)
解得
m2
2
=1
,或
m2
2
=7

所以,m=±
2
,或m=±
14
.…(13分)
点评:本题主要考查曲线的方程的求法,考查实数值的求法,考查直线与圆等知识,同时考查解析几何的基本思想方法和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设计一个算法求S=12-22+32-42+…+92-102,并画出流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,1),
n
=(
3
Acosx,
A
2
cos2x)(A>0),函数f(x)=
m
n
的最大值为6.
(Ⅰ)求A;
(Ⅱ)将函数y=f(x)的图象向左平移
π
12
个单位,再将所得图象上各点的横坐标缩短为原来的
1
2
倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[0,
24
]上的值域.
(Ⅲ)若函数y=f(x)满足方程f(x)=k(3<k<6),求此方程在[0,
6
]内所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知凸四边形ABCD,试比较AB•CD+BC•DA与AC•BD的大小.
(Ⅱ)△ABC三边a,b,c上的中线分别为ma,mb,mc,求证:abmc+bcma+camb≥a2ma+b2mb+c2mc

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-x2+ax-a(a∈R).
(1)当a=-3时,求函数f(x)的极值;
(2)若函数f(x)的图象与x轴有且只有一个交点,求a的取值范围.
(3)(理科)当x=4时,函数f(x)有极值,求函数f(x)在区间[-4,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某研究性学习小组对3月至7月连续100天昼夜温差大小与某种子发芽多少之间的关系进行研究,每天浸泡100颗种子的发芽情况统计如下表(1):
          表1
分组(单位:个)频数频率
[10,15)50.050
[15,20)200.200
[20,25)0.350
[25,30)30
[30,35)100.100
合计1001.00
(Ⅰ)频率分布表中的①,②位置应填什么数据?并补全频率分布直方图,作出频率分布折线图;根据频率分布直方图,估计100天里种子发芽的平均值;(8分)
(Ⅱ)下面是3月1日至5日每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数的详细记录:
      表2
日期3月1日3月2日3月3日3月4日3月2日
温差(℃)101113128
发芽数(颗)2325302616
(i)请根据3月2日至3月4日的数据,用最小二乘法求出y关于x的线性回归方程;
(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(i)中所得的线性回归方程是否可靠?(6分)
(参考公式:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x-lnx,g(x)=ex-x.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若存在x∈(0,+∞),使不等式
2x-m
g(x)
>x成立,求m的取值范围;
(Ⅲ)当x>0时,证明:|lnx-ex|>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
2b
13
属于特征值λ的一个特征向量为α=
1
-1

(1)求实数b,λ的值;
(2)若曲线C在矩阵A对应的变换作用下,得到的曲线为C′:x2+2y2=2,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果复数z=
a+i
i
(a∈R)的实部和虚部相等,则zi等于
 

查看答案和解析>>

同步练习册答案