精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-x2+ax-a(a∈R).
(1)当a=-3时,求函数f(x)的极值;
(2)若函数f(x)的图象与x轴有且只有一个交点,求a的取值范围.
(3)(理科)当x=4时,函数f(x)有极值,求函数f(x)在区间[-4,2]上的最值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的极值
专题:计算题,导数的综合应用
分析:(1)根据极值的定义,先对原函数求导数,然后令导函数等于0,求出方程的解,再根据极值的定义看在所求的点处能否取到极值,是极大值还是极小值;
(2)求出导函数,利用导函数根的判别式讨论导函数=0方程的解的情况得到关于a的不等式,因为图象与x轴有且只有一个交点,①根的判别式小于等于0,f′(x)≥0在R上恒成立,f(x)在R上单调递增,f(0)=-a<0,f(3)=2a>0;②根的判别式大于0时由f(x1)•f(x2)>0得到求出a的解集可;
(3)先求出a的值,再确定函数的单调性,即可求函数f(x)在区间[-4,2]上的最值.
解答: 解:(1)f(x)=
1
3
x3-x2-3x+3,
所以f′(x)=x2-2x-3.
解x2-2x-3=0,得:x=-1或x=3,所以
x∈(-∞,-1)时,f′(x)>0;
x∈(-1,3)时,f′(x)<0;
x∈(3,+∞)时,f′(x)>0.
根据极值的定义知:x=-1时,f(x)取到极大值f(-1)=
14
3
;x=3时,f(x)取到极小值f(3)=-6.
(2)∵f′(x)=x2-2x+a,∴△=4-4a=4(1-a).
①若a≥1,则△≤0,∴f′(x)≥0在R上恒成立,∴f(x)在R上单调递增.
∵f(0)=-a<0,f(3)=2a>0,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点.
②若a<1,则△>0,∴f′(x)=0有两个不相等的实数根,不妨设为x1,x2,(x1<x2).
∴x1+x2=2,x1x2=a.
∵x12-2x1+a=0,∴a=-x12+2x1
∴f(x1)=
1
3
x1[x12+3(a-1)]
同理f(x2)=
1
3
x2[x22+3(a-1)]
令f(x1)•f(x2)>0,解得a>0.
而当0<a<1时,f(0)=-a<0,f(3)=2a>0,
故当0<a<1时,函数f(x)的图象与x轴有且只有一个交点.
综上所述,a的取值范围是(0,+∞).
(3)f′(x)=x2-2x+a,
∵x=4时,函数f(x)有极值,
∴f′(4)=16-8+a,
∴a=-8,
∴f′(x)=(x-4)(x+2),f(x)=
1
3
x3-x2-8x+8
∴函数在[-4,-2]上单调递增,在[-2,2]上单调递减,
∴函数在x=-2时,函数取得最大值
52
3
,最小值34
2
3
点评:考查极值的定义,只要理解极值的定义,分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片,标号分别记为x,y,设随机变量ξ=|x-2|+|y-x|.
(1)写出x,y的可能取值,并求随机变量ξ的最大值;
(2)求事件“ξ取得最大值”的概率;
(3)求ξ的分布列和数学期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,已知
b
sinB
=
3c
sinA
,a=3,cosB=
2
3

(1)求b的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2+k
x2+4
,其中k为实数,求函数y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b为实数,0<n<1,0<m<1,m+n≤1.
(Ⅰ)求证:
a2
m
+
b2
n
≥(a+b)2
(Ⅱ)对于任意实数t,求证:(
a2
m
+
b2
n
)t2-2(a+b)t+(m+n)≥0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系内有两个定点F1、F2和动点P,F1、F2坐标分别为F1(-1,0)、F2(1,0),动点P满足
|PF1|
|PF2|
=
2
2
,动点P的轨迹为曲线C,曲线C关于直线y=x的对称曲线为曲线C′.
(1)求曲线的C′方程;
(2)若直线y=x+m-3与曲线C′交于A、B两点,D的坐标为(0,-3),△ABD的面积为
7
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和Sn满足:Sn=
1
2
(an+
1
an
).
(1)写出a1,a2,a3;             
(2)猜想an,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-a(x+1)在x=ln2处的切线的斜率为1.(e为无理数,e=2.71828…)
(Ⅰ)求a的值及f(x)的最小值;
(Ⅱ)当x≥0时,f(x)≥mx2恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A?B,求a的取值范围.

查看答案和解析>>

同步练习册答案