精英家教网 > 高中数学 > 题目详情
1.求直线3x+10y-25=0与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1的交点.

分析 直接利用已知条件联立方程组求解即可.

解答 解:联立直线3x+10y-25=0与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1,
消去y,化简可得x2-6x+9=0,
解得x=3,代入直线方程可得y=$\frac{8}{5}$
直线3x+10y-25=0与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1的交点为(3,$\frac{8}{5}$).

点评 本题考查直线和椭圆的交点坐标,注意运用联立直线方程和椭圆方程,消去一个变量,解方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$)-2cos2x+$\frac{3}{2}$.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=1,b+c=2,f(A)=$\frac{1}{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=3tanωx+1,若对任意x1,x2∈(-$\frac{π}{3}$,$\frac{π}{4}$)且x1≠x2,均有[f(x1)-f(x2)](x1-x2)<0成立.则实数ω的取值范围是(  )
A.-$\frac{3}{2}$≤ω≤$\frac{3}{2}$B.-$\frac{3}{2}$≤ω≤0C.-2≤ω<0D.-2≤ω≤2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)的图象如图所示,则f($\frac{5π}{12}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求圆(x-2)2+(y+4)2=36的圆心、半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{a}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,若△AOB是以O为直角顶点的等腰直角三角形,则$\overrightarrow{b}$=($\frac{\sqrt{3}}{2},\frac{1}{2}$)或(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆C经过点A(2,3),且点F(2,0)为其右焦点,则椭圆C的标准方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,cosA=-$\frac{5}{13}$,sinB=$\frac{4}{5}$.
(1)求cosC的值;
(2)设BC=15.求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.己知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点为F1,F2,点A在其右半支上,若$\overrightarrow{A{F}_{1}}$•$\overrightarrow{A{F}_{2}}$=0,若∠AF1F2∈(0,$\frac{π}{12}$),则该双曲线的离心率e的取值范围为(  )
A.(1,$\sqrt{2}$)B.(1,$\sqrt{3}$)C.($\sqrt{2}$,$\sqrt{3}$)D.($\sqrt{2}$,$\sqrt{6}$)

查看答案和解析>>

同步练习册答案