分析 设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意可得c=2,结合a,b,c的关系和点A(2,3),代入椭圆方程,解方程可得a,b,进而得到椭圆方程.
解答 解:设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得c=2,即有a2-b2=4,
代入点A(2,3),可得$\frac{4}{{a}^{2}}$+$\frac{9}{{b}^{2}}$=1,
解得a=4,b=2$\sqrt{3}$.
即有椭圆方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1.
故答案为:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1.
点评 本题考查椭圆的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com