分析 (1)利用两角和差的正弦公式进行转化求解即可.
(2)利用余弦定理结合直角三角形的定义进行判断即可.
解答 解:(1)∵sin(A+$\frac{π}{6}$)=2cosA,
∴$\frac{\sqrt{3}}{2}$sinA+$\frac{1}{2}$cosA=2cosA,
即$\frac{\sqrt{3}}{2}$sinA=$\frac{3}{2}$cosA,
即tanA=$\sqrt{3}$,
则△ABC中,A=$\frac{π}{3}$.
(2)由余弦定理得a2=b2+c2-2bccosA,
即a2=9c2+c2-2×3c2×$\frac{1}{3}$=8c2,
∴b2=9c2=8c2+c2=a2+c2,
即∠B是直角,
即△ABC是直角三角形.
点评 本题主要考查解三角形的应用,利用两角和差的正弦公式以及余弦定理是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{2}$≤ω≤$\frac{3}{2}$ | B. | -$\frac{3}{2}$≤ω≤0 | C. | -2≤ω<0 | D. | -2≤ω≤2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\sqrt{2}$) | B. | (1,$\sqrt{3}$) | C. | ($\sqrt{2}$,$\sqrt{3}$) | D. | ($\sqrt{2}$,$\sqrt{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a+$\frac{1}{a}$≥2 | B. | a+$\frac{1}{a}$≤-2 | C. | a+$\frac{1}{a}$=2 | D. | a+$\frac{1}{a}$≤-2或a+$\frac{1}{a}$≥2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com