| A. | (-1,0) | B. | (1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-∞,-1)∪(1,+∞) |
分析 构造函数g(x)=$\frac{f(x)}{x}$,根据题意得出g(x)为偶函数,且x>0时,g′(x)>0,g(x)是增函数;
讨论x>0、x<0和x=0时,不等式f(x)>x的解集情况,求出解集即可.
解答 解:∵f(x)是定义在R上的奇函数,
令g(x)=$\frac{f(x)}{x}$,∴g(x)为偶函数,
又当x>0时,xf′(x)>f(x),
∴g′(x)=$\frac{f′(x)•x-f(x)}{{x}^{2}}$>0;
∴g(x)在(0,+∞)上是增函数,在(-∞,0)上是减函数;
又f(-1)=-1,∴f(1)=1,g(1)=1;
当x>0时,∵不等式f(x)>x,
∴$\frac{f(x)}{x}$>1,即g(x)>g(1),
∴有x>1;
当x<0时,∵不等式f(x)>x,
∴$\frac{f(x)}{x}$<1,即g(x)<g(-1),
∴有-1<x<0;
当x=0时,f(0)=0,不等式f(x)>x不成立;
综上,不等式f(x)>x的解集是(-1,0)∪(1,+∞).
点评 本题考查了函数奇偶性的应用问题,也考查了不等式的解法与应用问题,考查了构造函数的应用问题以及分类讨论的应用问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | log310+3 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {0,1} | C. | {0,1,2} | D. | {1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$-1 | B. | 1-$\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com