精英家教网 > 高中数学 > 题目详情
15.(Ⅰ)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={x∈U|2<x<6}.
求集合B和集合(∁UA)∩B;
(Ⅱ)计算:$\sqrt{{{(π-4)}^2}}+{27^{-\;\frac{1}{3}}}-{log_2}\root{3}{2}+{(2-\sqrt{3})^0}$.

分析 (Ⅰ)根据集合的交补运算即可,
(Ⅱ)根据指数的运算性质计算即可.

解答 解:(Ⅰ)由已知得B={x∈U|2<x<6}={3,4,5},
∵全集U={1,2,3,4,5,6,7},A={2,4,5},
∴(∁UA)={1,3,6,7},
∴(∁UA)∩B={3}
(Ⅱ)$\sqrt{{{(π-4)}^2}}+{27^{-\;\frac{1}{3}}}-{log_2}\root{3}{2}+{(2-\sqrt{3})^0}$
=$|{π-4}|+\frac{1}{3}-\frac{1}{3}+1$,
=4-π+1
=5-π.

点评 本题考查了集合的混合运算和指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.解不等式组$\left\{\begin{array}{l}{x^2}-6x+8>0\\ \frac{x+3}{x-1}>2.\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,茎叶图记录了某校“春季运动会”甲、乙两名运动员的成绩,他们的平均成绩均为82分,则x+y=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,|AB|=4.
(I)求p的值;
(Ⅱ)设经过点B和抛物线对称轴平行的直线交抛物线y2=2px的准线于点D,求证:A,O,D三点共线(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某校为了解高三学生英语听力情况,抽查了甲、乙两班各十名学生的一次英语听力成绩,并将所得数据用茎叶图表示(如图所示),则以下判断正确的是(  )
A.甲组数据的众数为28B.甲组数据的中位数是22
C.乙组数据的最大值为30D.乙组数据的极差为16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的前n项和为${S_n}={n^2}-2n$,则a3+a17=(  )
A.36B.35C.34D.33

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5得数据如下表:
时间周一周二周三周四周五
车流量x(万辆)5051545758
PM2.5的浓度y(微克/立方米)6970747879
(Ⅰ)根据上表数据求出y与x的线性回归直线方程$\hat y=\hat bx+\hat a$,
(Ⅱ)若周六同一时间段车流量是25万辆,试根据(Ⅰ)中求出的线性回归方程预测此时PM2.5的浓度是多少?(保留整数)
参考公式其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$:方程$\hat y=\hat bx+\hat a$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若变量x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤4}\\{y≥1}\end{array}\right.$,则z=$\frac{1}{2}$x+y的取值范围为[$\frac{3}{2}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sin(ωx+φ),ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,相邻两对称轴间的距离为π,若将y=f(x)的图象向右平移$\frac{π}{6}$个单位,所得的函数y=g(x)为奇函数.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)若关于x的方程2[g(x)]2-m[g(x)]+1=0在区间[0,$\frac{π}{2}$]上有两个不相等的实根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案