精英家教网 > 高中数学 > 题目详情
14.定义2×2矩阵$[\begin{array}{l}{a_1}\\{a_3}\end{array}\right.\left.\begin{array}{l}{a_2}\\{a_4}\end{array}]={a_1}{a_4}-{a_2}{a_3}$,若$f(x)=[{\begin{array}{l}{cosx-sinx}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{cosx+sinx}\end{array}}]$,则f(x)(  )
A..图象关于(π,0)中心对称B.图象关于直线$x=\frac{π}{2}$对称
C.在区间$[-\frac{π}{6},0]$上单调递增D.周期为π的奇函数

分析 利用二倍角和辅助角公式化简函数的解析式,进而分析出函数的奇偶性,单调性,对称性,可得答案.

解答 解:∵$f(x)=[{\begin{array}{l}{cosx-sinx}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{cosx+sinx}\end{array}}]$=$(cosx-sinx)(cosx+sinx)-\sqrt{3}cos(\frac{π}{2}+2x)$=cos2x+$\sqrt{3}$sin2x=2sin(2x+$\frac{π}{6}$),
当x=π时,f(x)=1,故(π,0)不是函数图象的对称中心,故A错误;
当$x=\frac{π}{2}$时,f(x)=-1,不取最值,故$x=\frac{π}{2}$不是函数图象的对称轴,故B错误;
当x$[-\frac{π}{6},0]$时,2x+$\frac{π}{6}$∈$[-\frac{π}{6},\frac{π}{6}]$,故f(x)此时为增函数,故C正确;
f(x)是周期为π的非奇非偶函数,故D错误;
故选:C

点评 本题考查的知识点是正弦型函数的图象和性质,熟练掌握正弦型函数的奇偶性,单调性,对称性,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若等差数列{an}的前n项和为Sn,a4=4,S4=10,则数列$\left\{{\frac{1}{{\;{a_n}{a_{n+1}}\;}}}\right\}$的前2018项的和为$\frac{2018}{2019}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等比数列{an}中,若${a_1}=\frac{1}{2},{a_4}=4$,则a1+a2+…+an=2n-1-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若xlog34=1,则x=log43; 4x+4-x=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面直角坐标系xOy中,曲线x2+y2=2|x|+2|y|围成的图形的面积为4π+8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如果有穷数列a1,a2,a3,…am(m为正整数)满足a1=am,a2=am-1,…am=a1,即ai=am-i+1(i=1,2…,m),那么我们称其为对称数列.
(1)设数列{bn}是项数为7的对称数列,其中b1,b2,b3,b4为等差数列,且b1=2,b4=11,依次写出数列{bn}的各项;
(2)设数列{cn}是项数为2k-1(正整数k>1)的对称数列,其中ck,ck+1,…,c2k-1是首项为50,公差为-4的等差数列.记数列{cn}的各项和为数列S2k-1,当k为何值时,S2k-1取得最大值?并求出此最大值;
(3)对于确定的正整数m>1,写出所有项数不超过2m的对称数列,使得1,2,22,…,2m-1依次为该数列中连续的项.当m>1500时,求其中一个数列的前2015项和S2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC的内角A,B,C的对边分别为a,b,c,已知cosC=$\frac{1}{4}$,a=1,c=2,则△ABC的面积为(  )
A.$\frac{\sqrt{15}}{4}$B.$\frac{\sqrt{15}}{8}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若函数f(x)=$\sqrt{(a-2){x^2}+2(a-2)x+4}$的定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}x+4,-8≤x≤0\\{x^2}-2x,0<x≤4\\-x+2,\;4<x<6\end{array}$.
(1)画出y=f(x)的图象并写出最值;
(2)求f(x)>-2的解集.

查看答案和解析>>

同步练习册答案