精英家教网 > 高中数学 > 题目详情
5.在等比数列{an}中,若${a_1}=\frac{1}{2},{a_4}=4$,则a1+a2+…+an=2n-1-$\frac{1}{2}$.

分析 利用等比数列的通项公式及其前n项和公式即可得出

解答 解:∵等比数列{an}中,∵a1=$\frac{1}{2}$,a4=4,
∴4=$\frac{1}{2}$•q3,解得q=2.
∴a1+a2+…+an=$\frac{\frac{1}{2}(1-{2}^{n})}{1-2}$=2n-1-$\frac{1}{2}$.
故答案为:2n-1-$\frac{1}{2}$

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{{{2^x}+a}}{{{2^x}-1}}$是奇函数.
(1)求a的值;   
(2)解不等式f(x)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$f(x)=sin(2x+θ)+\sqrt{3}cos(2x+θ)$为奇函数,且在$[-\frac{π}{4},0]$上为减函数的θ值可以是(  )
A.$-\frac{π}{3}$B.$-\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)={e^x}-\frac{1}{2}{(x+a)^2}$.
(1)若曲线y=f(x)在点x=0处的切线斜率为1,求函数f(x)的单调区间;
(2)若x≥0时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$p:|{1-\frac{x-1}{3}}|≤2$;q:x2-4x+4-m2≤0(m>0)若?p是?q的必要非充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)在x=3处可导,且f′(3)=-2,且f(3)=2,求$\underset{lim}{x→3}$$\frac{2x-3f(x)}{x-3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数$f(x)=\sqrt{ln(x+1)+2x-a}$(a∈R).若存在x0∈[0,1]使得f(f(x0))=x0,则a的取值范围是[-1,2+ln2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义2×2矩阵$[\begin{array}{l}{a_1}\\{a_3}\end{array}\right.\left.\begin{array}{l}{a_2}\\{a_4}\end{array}]={a_1}{a_4}-{a_2}{a_3}$,若$f(x)=[{\begin{array}{l}{cosx-sinx}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{cosx+sinx}\end{array}}]$,则f(x)(  )
A..图象关于(π,0)中心对称B.图象关于直线$x=\frac{π}{2}$对称
C.在区间$[-\frac{π}{6},0]$上单调递增D.周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图网格纸上的小正方形边长为1,粗线是一个三棱锥的三视图,则该三棱锥的外接球表面积为(  )
A.48πB.36πC.24πD.12π

查看答案和解析>>

同步练习册答案