精英家教网 > 高中数学 > 题目详情
16.函数$f(x)=sin(2x+θ)+\sqrt{3}cos(2x+θ)$为奇函数,且在$[-\frac{π}{4},0]$上为减函数的θ值可以是(  )
A.$-\frac{π}{3}$B.$-\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

分析 首先根据已知将函数f(x)化简为f(x)=2sin(2x+θ+$\frac{π}{3}$),然后根据函数的奇偶性确定θ的取值,将选项分别代入验证再根据单调性即可排除选项.

解答 解:由已知得:f(x)=2sin(2x+θ+$\frac{π}{3}$),
由于函数为奇函数,故有θ+$\frac{π}{3}$=kπ,
即:θ=kπ-$\frac{π}{3}$(k∈Z),可淘汰B、C选项
然后分别将A和D选项代入检验,
易知当θ=$\frac{2π}{3}$时,
f(x)=-2sin2x其在区间[-$\frac{π}{4}$,0]上递减,
故选D.

点评 本题考查正弦函数的奇偶性和单调性,通过对已知函数的化简,判断奇偶性以及单调性,通过对选项的分析得出结果.考查了对三角函数图象问题的熟练掌握和运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.等比数列$\left\{{a_n}\right\}满足:{a_1}=b-1(b>0且b≠1),{S_2}={b^2}-1$.
(1)求数列{an}的通项公式;
(2)当b=2时,记${b_n}=\frac{n+1}{{4{a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lg($\frac{2}{x+1}$-1)的定义域为集合A,函数g(x)=-x2+2x+a(0≤x≤3,a∈R)的值域为集合B
(Ⅰ)求f($\frac{1}{2015}$)+f(-$\frac{1}{2015}$)的值;
(Ⅱ)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若等差数列{an}的前n项和为Sn,a4=4,S4=10,则数列$\left\{{\frac{1}{{\;{a_n}{a_{n+1}}\;}}}\right\}$的前2018项的和为$\frac{2018}{2019}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若平面向量$\overrightarrow a=(-1,2)$与$\overrightarrow b$方向相反,且$|{\overrightarrow b}|=\sqrt{5}$,则$\overrightarrow b$的坐标为(1,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知α,β是不同的平面,m,n是不同的直线,给出下列命题:
①若m?α,n?α,m∥β,n∥β,则α∥β;
②若m?α,n?α,m,n是异面直线,则n与α相交;
③若α∩β=m,n∥m,且n?α,n?β,则n∥α,n∥β.
其中真命题的个数是(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,在直三棱柱ABC-A1B1C1中,∠CAB=90°,AC=AB=AA1,则异面直线AC1,A1B所成角的余弦值为(  )
A.$-\frac{1}{4}$B.$\frac{1}{4}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等比数列{an}中,若${a_1}=\frac{1}{2},{a_4}=4$,则a1+a2+…+an=2n-1-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC的内角A,B,C的对边分别为a,b,c,已知cosC=$\frac{1}{4}$,a=1,c=2,则△ABC的面积为(  )
A.$\frac{\sqrt{15}}{4}$B.$\frac{\sqrt{15}}{8}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案