精英家教网 > 高中数学 > 题目详情
13.已知点P(x,y)(xy≠0)是椭圆$\frac{x^2}{16}$+$\frac{y^2}{8}$=1上动点,F1、F2为椭圆的左,右焦点,?λ∈R+,使得$\overrightarrow{PM}$=λ(${\frac{{\overrightarrow{P{F_1}}}}{{|{\overrightarrow{P{F_1}}}|}}$+$\frac{{\overrightarrow{P{F_2}}}}{{|{\overrightarrow{P{F_2}}}|}}}$),且$\overrightarrow{{F_1}M}$•$\overrightarrow{MP}$=0,则|$\overrightarrow{OM}}$|的取值范围为(0,2$\sqrt{2}$).

分析 延长F2M交PF1于点N,由题意可知△PNF2为等腰三角形,得OM是△PF1F2的中位线.利用三角形中位线定理和椭圆的定义,算出|OM|=a-|PF2|,再由椭圆的焦半径|PF2|的取值范围加以计算,即可得到|OM|的取值范围.

解答 解:如图,延长PF2、F1M,交与N点,连接OM
∵$\overrightarrow{PM}$=λ(${\frac{{\overrightarrow{P{F_1}}}}{{|{\overrightarrow{P{F_1}}}|}}$+$\frac{{\overrightarrow{P{F_2}}}}{{|{\overrightarrow{P{F_2}}}|}}}$),且$\overrightarrow{{F_1}M}$•$\overrightarrow{MP}$=0,
∴PM是∠F1PF2,且F1M⊥MP,
∴|PN|=|PF1|,M为F1F2中点,
∵O为F1F2中点,M为F1N中点
∴|OM|=$\frac{1}{2}$|F2N|=$\frac{1}{2}$||PN|-|PF2||=$\frac{1}{2}$||PF1|-|PF2||
设P点坐标为(x0,y0
∵在椭圆$\frac{x^2}{16}$+$\frac{y^2}{8}$=1,离心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$
由圆锥曲线的统一定义,得|PF1|=a+ex0,|PF2|=a-ex0
∴||PF1|-|PF2||=|a+ex0+a-ex0|=|2ex0|=$\sqrt{2}$|x0|
∵P点在椭圆$\frac{x^2}{16}$+$\frac{y^2}{8}$=1上,∴|x0|∈[0,4],
又∵x≠0,y≠0,可得|x0|∈(0,4),∴|OM|∈(0,2$\sqrt{2}$).
故答案为:(0,2$\sqrt{2}$).

点评 本题给出椭圆焦点三角形角平分线的垂线,求垂足到椭圆中心距离的范围.着重考查了椭圆的定义与简单几何性质、等腰三角形的判定与性质和三角形中位线定理等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线$\hat y$=$\hat b$x+$\hat a$近似地刻画其相关系,根据图形,以下结论最有可能成立的是(  )
A.线性相关关系较强,b的值为3.25B.线性相关关系较强,b的值为0.83
C.线性相关关系较强,b的值为-0.87D.线性相关关系太弱,无研究价值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设x是实数,定义[x]不超过实数x的最大整数,如:[2]=2,[2.3]=2,[-2.3]=-3,记函数f(x)=x-[x],函数g(x)=[3x+1]+$\frac{1}{2}$给出下列命题:
①函数f(x)在[-$\frac{1}{6}$,$\frac{2}{3}$]上有最小值,无最大值;       
②f(-$\frac{1}{2}$)=f($\frac{1}{2}$)且f(x)为偶函数;
③若g(x)-2x=0的解集为M,则集合M的所有元素之和为-2;
④设an=f($\frac{201{2}^{n}}{2013}$),则当n为偶数时$\sum_{i=1}^{n}$ai=$\frac{n}{2}$,当n为奇数时,则$\sum_{i=1}^{n}$ai=$\frac{n-1}{2}$+$\frac{2012}{2013}$.
其中正确的命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设a,b都是正数,且a+b-2a2b2-6=0,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为4$\sqrt{3}$,此时ab的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=$\frac{3sinx+1}{3sinx+2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a,b,c均为正实数,a+2b+3c=m,且abc的最大值为$\frac{4}{3}$,则m的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.
(Ⅰ)求x<2且y>1的概率;
(Ⅱ)求随机变量ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一个盒中有12个乒乓球,其中9个新的(未用过的球称为新球),3个旧的(新球用一次即称为旧球).现从盒子中任取3个球来用,用完后装回盒中,设随机变量X表示此时盒中旧球个数.
(1)求盒中新球仍是9个的概率;
(2)求随机变量X的概率分布.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题“?x∈(0,+∞),x+$\frac{4}{x}$<4”的否定的真假是真.(填“真”或“假”)

查看答案和解析>>

同步练习册答案