精英家教网 > 高中数学 > 题目详情
如图,已知AB为圆O的直径,PA、PC是圆O的切线,A、C为切点,∠BAC=30°,PB交圆O于点D.
(1)求∠APC的大小;
(2)若PA=
21
,求PD的长.
考点:与圆有关的比例线段
专题:直线与圆
分析:(1)由切线性质得∠BAP=90°,PA=PC,由此能求出∠APC=60°.
(2)由已知条件得到AC=PA=
21
,∠ACB=90°,由此利用切割线定理能求出PD.
解答: 解:(1)∵PA是⊙O的切线,AB为⊙O的直径,
∴∠BAP=90°.∵∠BAC=30°,
∴∠CAP=∠PAB-∠CAB=60°.…(2分)
∵PA、PC是⊙O的切线,∴PA=PC,
∴△PAC是等边三角形.…(4分)
∴∠APC=60°(5分)
(2)∵△PAC是等边三角形,
∴AC=PA=
21
,…(6分)
∵AB是⊙O的直径,∴∠ACB=90°…(7分)
连接BC,在直角△ABC中,∵∠BAC=30°,∴AB=2
7
,…(8分)
∴在直角△PAB中,PB=
PA2+AB2
=7,…(9分)
∵PA是⊙O的切线,∴PA2=PD•PB,…(11分)
∴21=PD×7,解得PD=3.…(12分)
点评:本题考查角的大小的求法,考查线段长的求法,解题时要认真审题,注意切割线定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P分别为AB,CB的中点,M为底面△OBF的重心.
(Ⅰ)求证:平面ADF⊥平面CBF;
(Ⅱ)求证:PM∥平面AFC;
(Ⅲ)求多面体CD-AFEB的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=|x+1|的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=2x+2上的动点(an,an+1),n∈N*与定点(2,-3)所成直线的斜率为bn,且a1=3,
(1)求数列{an}的通项公式;
(2)证明:2<bn+1<bn≤11;
(3)证明:
1
b1-2
+
1
b2-2
+
1
b3-2
+…
1
bn-2
<2n

查看答案和解析>>

科目:高中数学 来源: 题型:

某发射装置上有一个特殊的按键,在发射装置的屏幕上显示正整数n时按下这个键,会等可能的将其替换为0~n-1中的任意一个数,反复按这个键使得最终显示0,我们把这一操作称为“还原”操作.
(Ⅰ)设初始值为15,求在“还原”操作中出现9的概率;
(Ⅱ)当初始值为4时,进行“还原”操作,记操作次数为ξ,求ξ的概率分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若母线长是4的圆锥的轴截面的面积是8,求圆锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(Ⅰ)求直线EC与平面ABE所成角的正切值;
(Ⅱ)线段EA上是否存在点F,使EC∥平面FBD?存在请确定具体位置,不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a>0).
(Ⅰ)(i)若b=-2,且f(x)在(1,+∞)上为单调递增函数,求实数a的取值范围;
(ii)若b=-1,c=1,当x∈[0,1]时,|f(x)|的最大值为1,求实数a的取值范围;
(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有两个小于1的不等正根,求a的最小正整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学将一块底边长为5的等腰直角三角板按如图所示的方式放置在平面直角坐标系上,其中∠OMN=
π
2
,函数f(x)=Asin(ωx),(A>0,ω>0),
(1)若函数f(x)在同一周期内的图象过点O,M,N,求函数f(x)的解析式;
(2)若将该三角板绕原点按逆时针方向旋转角α(0<α<
π
2
)
时;顶点M′,N′恰好同时落在曲线y=
k
x
(x≠0)上,求实数k的值;
(3)若当x∈[0,π]时,函数f(x)的图象恰好都落在△OMN内(允许落在△OMN的边界上),求当么取最大值时,函数g(x)=cos(ωx+A)在区间[0,π]上的最值.

查看答案和解析>>

同步练习册答案