精英家教网 > 高中数学 > 题目详情
7.已知椭圆E:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,A,F分别是椭圆E的左顶点,上焦点,直线AF的斜率为$\sqrt{3}$,直线l:y=kx+m与y轴交于异于原点的点P,与椭圆E交于M,N两个相异点,且$\overrightarrow{MP}$=λ$\overrightarrow{PN}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在实数m,使$\overrightarrow{OM}$+λ$\overrightarrow{ON}$=4$\overrightarrow{OP}$?若存在,求m的取值范围;若不存在,请说明理由.

分析 (Ⅰ)利用椭圆的离心率以及直线AF的斜率为$\sqrt{3}$,列出方程组求解a,b,即可的椭圆方程.
(Ⅱ)求出P(0,m),由$\overrightarrow{MP}$=λ$\overrightarrow{PN}$,得$\overrightarrow{OP}-\overrightarrow{OM}=λ(\overrightarrow{ON}-\overrightarrow{OP})$,转化求解λ,设M(x1,kx1+m),N(x2,kx2+m),联立直线与椭圆方程,利用判别式以及韦达定理得到k,m的不等式,通过向量关系求出k2=$\frac{4-{m}^{2}}{{m}^{2}-1}$.然后求解m的范围.

解答 解:(Ⅰ)由已知得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{c}{b}=\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,…(3分)
解得a=2,b=1.
∴椭圆E的方程为$\frac{{y}^{2}}{4}$+x2=1.…(5分)
(Ⅱ)根据已知得P(0,m),由$\overrightarrow{MP}$=λ$\overrightarrow{PN}$,得$\overrightarrow{OP}-\overrightarrow{OM}=λ(\overrightarrow{ON}-\overrightarrow{OP})$
∴$\overrightarrow{OM}+λ\overrightarrow{ON}=(1+λ)\overrightarrow{OP}$.
∵$\overrightarrow{OM}+λ\overrightarrow{ON}=4\overrightarrow{OP}$,∴(1+λ)$\overrightarrow{OP}$=$4\overrightarrow{OP}$.
∴1+λ=4,解得λ=3.…(7分)
设M(x1,kx1+m),N(x2,kx2+m),
由$\left\{\begin{array}{l}{y=kx+m}\\{4{x}^{2}+{y}^{2}-4=0}\end{array}\right.$,得(k2+4)x2+2mkx+m2-4=0(※)
由已知得△=4m2k2-4(k2+4)(m2-4)>0,即
k2-m2+4>0,
且x1+x2=$\frac{-2km}{{k}^{2}+4}$,x1x2=$\frac{{m}^{2}-4}{{k}^{2}+4}$.…(9分)
由$\overrightarrow{MP}=3\overrightarrow{PN}$,得-x1=3x2,即(x1+x2)+2x2=0.
∴x2=$\frac{km}{{k}^{2}+m}$.代入(※)式中整理得m2k2+m2-k2-4=0.…(10分)
当m2=1时,m2k2+m2-k2-4=0不成立.
∴k2=$\frac{4-{m}^{2}}{{m}^{2}-1}$.
∵k2-m2+4>0,
∴$\frac{4-{m}^{2}}{{m}^{2}-1}$-m2+4>0,即$\frac{(4-{m}^{2}){m}^{2}}{{m}^{2}-1}$>0.
∴1<m2<4,解得-2<m<-1或1<m<2.
综上所述,当-2<m<-1,或1<m<2时,$\overrightarrow{OM}+λ\overrightarrow{ON}=4\overrightarrow{OP}$.…(12分)

点评 本题考查直线与椭圆的位置关系的综合应用,有关范围的问题的解决方法,考查椭圆的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点.若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为$8\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在梯形ABCD中,已知AB∥CD,AB=2CD=2,$\frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}•\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$=$\frac{1}{2}$,动点E和F分别在线段CD和BC上,且$\overrightarrow{BA}•\overrightarrow{BE}$的最大值为$\frac{7}{2}$,则$\overrightarrow{AC}•\overrightarrow{AF}$的取值范围为[$\frac{7}{4}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个直三棱柱的平面展开图如图所示:
(1)某同学想用斜二侧画法画出其直观图,他已经画完一个侧面ABED,请帮他完成该直三棱柱的直观图,并把字母C和F,标在相应的顶点处;
(2)在该直三棱柱中,线段CB上是否存在一点M,使AM⊥面BCFE,若存在,说出点M的位置,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在正方体ABCD-A1B1C1D1中,P为AA1中点,Q为CC1的中点,AB=2,则三棱锥B-PQD的体积为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=tan({x-\frac{π}{4}})$的单调递增区间为(  )
A.$({kπ-\frac{π}{2},kπ+\frac{π}{2}})({k∈Z})$B.(kπ,kπ+π)(k∈Z)C.$({kπ-\frac{3π}{4},kπ+\frac{π}{4}})({k∈Z})$D.$({kπ-\frac{π}{4},kπ+\frac{3π}{4}})({k∈Z})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有下列说法:
①30°与-30°角的终边方向相反;
②-330°与-390°角的终边相同;
③α=(2k+1)•180°(k∈Z)与β=(4k±1)•180°(k∈Z)角的终边相同;
④设M={x|x=45°+k•90°,k∈Z},N={y|y=90°+k•45°,k∈Z},则M?N.
其中所有正确说法的序号是(  )
A.①③B.②③C.③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=x+1+lnx在点A(1,2)处的切线为l,若l与二次函数y=ax2+(a+2)x+1的图象也相切,则实数a的取值为(  )
A.12B.8C.4D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)可导,f′(1)=1则$\lim_{△x→0}\frac{f(1+△x)-f(1)}{3△x}$=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案