精英家教网 > 高中数学 > 题目详情
20.已知1ogm27•1og94=6,则m的值是(  )
A.4B.3C.2D.$\sqrt{2}$

分析 利用对数的运算法则,结合换底公式求解即可.

解答 解:1ogm27•1og94=6,
可得31ogm3•1og32=6,
即:1ogm3•1og32=2,
可得1ogm3=21og23=1og$\sqrt{2}$3,
∴m=$\sqrt{2}$.
故选:D.

点评 本题考查方程的根,函数的零点的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设f(x)是定义在(0,+∞)上的函数,对x,y∈(0,+∞)恒有f(x•y)=f(x)•f(y),f(x)>0,且当x>1时,f(x)>1.求证:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算2013${\;}^{-lo{g}_{2013}2014}$的结果为(  )
A.-2014B.$\frac{1}{2014}$C.2014D.-$\frac{1}{2014}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.集合A={x∈R|ax2-2x+2=0},集合B={y∈R|y2-3y+2=0},如果A∪B=B,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=3-x(-1≤x≤1)
(1)求关于x的函数y=[f(x)]2-2a•f(x)+3(a≤3),当x∈[-1,1]时的最小值h(a);
(2)我们把同时满足下列两个性质的函数称为“和谐函数”:
①函数在整个定义域上是单调递增函数或单调递减函数;
②在函数的定义域内存在区间[p,q]使得函数在区间[p,q]上的值域为p2,q2的闭区间(p<q);
(Ⅰ)判断(1)中h(x)是否为“和谐函数”?若是,求出p,q的值或关系式;若不是,请说明理由;
(Ⅱ)若关于x的函数y=$\sqrt{{x}^{2}-1}$+t(x≥1)是“和谐函数”,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的函数f(x)是偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{2sin\frac{π}{2}x,0≤x≤1}\\{(\frac{1}{2})^{x}-\frac{3}{2},x>1}\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0,(a,b∈R),有且仅有6个不同实数根,则实数a的取值范围(  )
A.(-4,-$\frac{3}{2}$)B.(-4,-$\frac{7}{2}$)C.(-4,-$\frac{7}{2}$)∪(-$\frac{7}{2}$,$\frac{3}{2}$)D.(-$\frac{7}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足x2+y2=1,则(1-xy)(1+xy)的取值范围是[$\frac{3}{4}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=2x+$\frac{a}{{2}^{x}}$-1(a为实数).
(1)当a=0时,若函数y=g(x)为奇函数,且在x>0时,g(x)=f(x),求函数y=g(x)的解析式;
(2)当a<0时,求关于x的方程f(x)=0在实数集R上的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{a-{a}^{2}+6}{{2}^{x}-a}$(a∈R),在[1,+∞)上单凋递减,求实数a的取值范围.

查看答案和解析>>

同步练习册答案