精英家教网 > 高中数学 > 题目详情
16.若不等式a2+8b2≥λb(a+b)对任意的实数a,b均成立,则实数λ的取值范围为(  )
A.[-8,4]B.[-4,8]C.[-6,2]D.[-2,6]

分析 b=0时化为:a2≥0,可得λ∈R.b≠0,化为:$(\frac{a}{b})^{2}$-$λ•\frac{a}{b}$+8-λ=0恒成立,可得△≤0,解出即可得出.

解答 解:b=0时化为:a2≥0,可得λ∈R.
b≠0,化为:$(\frac{a}{b})^{2}$-$λ•\frac{a}{b}$+8-λ≥0恒成立,
∴△=λ2-4(8-λ)≤0,即λ2-4λ-32≤0,
解得-8≤λ≤4,
∴实数λ的取值范围为[-8,4].
故选:A.

点评 本题考查了一元二次不等式的解集与判别式的关系、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.关于函数y=${x^{-\frac{1}{3}}}$叙述正确的是(  )
A.在(-∞,+∞)上单调递减B.在(-∞,0),(0,+∞)上单调递减
C.在(-∞,0),(0,+∞)上单调递增D.在(-∞,0)∪(0,+∞)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-0.96)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(\frac{3}{2})^{-2}}+{[{(-\root{3}{2})^{-4}}]^{-\frac{3}{4}}}$
(2)已知14a=6,14b=7,用a,b表示log4256.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列各式的值:
(1)2log510+log50.25;
(2)${({\frac{8}{125}})^{-\frac{1}{3}}}-{({-\frac{3}{5}})^0}+{16^{0.75}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出以下四个命题:①若a>b,则$\frac{1}{a}$<$\frac{1}{b}$;②若ac2>bc2,则a>b③若a>|b|,则a>b;④若a>b,则a2>b2.其中正确的是(  )
A.②④B.①③C.①②D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.使不等式${2^x}>\frac{8}{x}$成立的x的取值范围为(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB与△PAD都是等边三角形,平面ABCD⊥平面PBD.
(I)证明:CD⊥平面PBD;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上一点P到点(5,0)的距离为15,则点P到点(-5,0)的距离为23或7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$.以原点为圆心,椭圆的短轴长为直径的圆与直线x-y+$\sqrt{2}$=0相切.
(1)求椭圆C的方程;
(2)如图,若斜率为k(k≠0)的直线l与x轴、椭圆C顺次相交于A,M,N(A点在椭圆右顶点的右侧),且∠NF2F1=∠MF2A.求证直线l恒过定点,并求出斜率k的取值范围.

查看答案和解析>>

同步练习册答案