精英家教网 > 高中数学 > 题目详情

中,角A、B、C的对边分别为,已知向量,且
(1)求角的大小;  
(2)若,求面积的最大值。(12分)

(1)(2)

解析试题分析:(1)由 向量垂直的充分条件可得,再由正弦定理和两角和差公式可得解得;(2)由余弦定理和基本不等式可得16=,即,最后再由三角形面积公式可得ΔABC面积最大值为.
试题解析:(1)由,得,    1分
由正弦定理可得,      6分
(2)由余弦定理可得,,16=
知ΔABC面积最大值为       12分
考点:1.向量的坐标运算;2.正弦定理和余弦定理;3.三角形面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知△ABC的内角ABC所对的边分别是abc,设向量m=(ab),n=(sin B,sin A),p=(b-2,a-2).
(1)若mn,求证:△ABC为等腰三角形;
(2)若mp,边长c=2,C,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为.设向量
(1)若,求角;(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b,c分别为△ABC三个内角A,B,C的对边,且
(Ⅰ)求B;
(2)若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数
(1)求的最大值,并求取最大值时的取值集合;
(2)已知 分别为内角的对边,且成等比数列,角为锐角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,BC=a,AC=b,a、b是方程的两个根,且,求△ABC的面积及AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在海岸线一侧C处有一个美丽的小岛,某旅游公司为方便游客,在上设立了A、B两个报名点,满足A、B、C中任意两点间的距离为10千米。公司拟按以下思路运作:先将A、B两处游客分别乘车集中到AB之间的中转点D处(点D异于A、B两点),然后乘同一艘游轮前往C岛。据统计,每批游客A处需发车2辆,B处需发车4辆,每辆汽车每千米耗费2元,游轮每千米耗费12元。设∠,每批游客从各自报名点到C岛所需运输成本S元。

⑴写出S关于的函数表达式,并指出的取值范围;
⑵问中转点D距离A处多远时,S最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知,求边的长及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角A、B,C,所对的边分别为,且
(Ⅰ)求的值;
(Ⅱ)若,求的面积.

查看答案和解析>>

同步练习册答案