精英家教网 > 高中数学 > 题目详情
17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),O是坐标原点,F1,F2分别为其左右焦点,|F1F2|=2$\sqrt{3}$,M是椭圆上一点,∠F1MF2的最大值为$\frac{2}{3}$π
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C交于P,Q两点,且OP⊥OQ
(i)求证:$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}$为定值;
(ii)求△OPQ面积的取值范围.

分析 (Ⅰ)利用已知条件求出a=2,b=1,得椭圆方程.
(Ⅱ)i)当OP,OQ斜率都存在且不为0时,设lOP:y=kx,P(x1,y1),Q(x2,y2)联立直线与椭圆方程,求出PQ坐标,然后求解$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}$为定值.当OP,OQ斜率一个为0,一个不存在时,验证即可.ii) 当OP,OQ斜率都存在且不为0时,表示△OPQ面积,利用基本不等式求解面积的范围即可.

解答 解:(Ⅰ)由题意椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),O是坐标原点,F1,F2分别为其左右焦点,|F1F2|=2$\sqrt{3}$,M是椭圆上一点,∠F1MF2的最大值为$\frac{2}{3}$π,可得c=$\sqrt{3}$,2b=a,a2=b2+c2
得a=2,b=1,得椭圆方程为:$\frac{x^2}{4}+{y^2}=1$…(4分)

(Ⅱ)i)当OP,OQ斜率都存在且不为0时,设lOP:y=kx,P(x1,y1),Q(x2,y2
由$\left\{\begin{array}{l}y=kx\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$消y得${x_1}^2=\frac{4}{{1+4{k^2}}}$,${y_1}^2={k^2}{x_1}^2=\frac{{4{k^2}}}{{1+4{k^2}}}$
同理得${x_2}^2=\frac{{4{k^2}}}{{4+{k^2}}}$,${y_2}^2=\frac{1}{k^2}{x_2}^2=\frac{4}{{{k^2}+4}}$
故$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}=\frac{1}{{{x_1}^2+{y_1}^2}}+\frac{1}{{{x_2}^2+{y_2}^2}}=\frac{5}{4}$…(7分)
当OP,OQ斜率一个为0,一个不存在时,得$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}=\frac{1}{4}+\frac{1}{1}=\frac{5}{4}$
综上得$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}=\frac{5}{4}$,得证.                             …(8分)
(未讨论斜率这扣1分)
ii) 当OP,OQ斜率都存在且不为0时,${S_{OPQ}}=\frac{1}{2}\sqrt{O{P^2}•O{Q^2}}=\frac{1}{2}\sqrt{\frac{{4{k^2}+4}}{{1+4{k^2}}}•\frac{{4{k^2}+4}}{{{k^2}+4}}}$
=$2\sqrt{\frac{1}{{4+\frac{{9{k^2}}}{{{k^4}+2{k^2}+1}}}}}$
又$0<\frac{{9{k^2}}}{{{k^4}+2{k^2}+1}}≤\frac{{9{k^2}}}{{2\sqrt{{k^4}•1}+2{k^2}}}=\frac{9}{4}$
所以$\frac{4}{5}≤{S_{△OPQ}}<1$…..(11分)
当OP,OQ斜率一个为0,一个不存在时,S△OPQ=1
综上得$\frac{4}{5}≤{S_{△OPQ}}≤1$…(12分)
(未讨论斜率这扣1分)

点评 本题考查椭圆方程的求法,椭圆的简单性质的应用,直线与椭圆的位置关系的综合应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a,b,c,三角形的面积S可由公式$S=\sqrt{p(p-a)(p-b)(p-c)}$求得,其中p为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足a+b=12,c=8,则此三角形面积的最大值为(  )
A.$4\sqrt{5}$B.$8\sqrt{5}$C.$4\sqrt{15}$D.$8\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\sqrt{3}$,1),则∠ABC=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一只小虫在半径为3的球内自由飞行,若在飞行中始终保持与球面的距离大于1,称为“安全距离”,则小虫安全的概率为$\frac{8}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a,b>0)的右顶点,过左焦点F与y轴平行的直线交双曲线于P,Q两点,若△APQ是锐角三角形,则双曲线C的离心率范围是(  )
A.$({1,\sqrt{2}})$B.$({1,\sqrt{3}})$C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=asinxcosx-{sin^2}x+\frac{1}{2}$的一条对称轴方程为$x=\frac{π}{6}$,则函数f(x)的单调递增区间为(  )
A.$[{kπ-\frac{π}{3},kπ+\frac{π}{6}}]$,(k∈Z)B.$[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}]$,(k∈Z)
C.$[{kπ-\frac{7π}{12},kπ-\frac{π}{12}}]$,(k∈Z)D.$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]$,(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是R上的奇函数,且满足f(x+2)=-f(x),当x∈(0,1]时,f(x)=2x-1,则方程f(x)=log7|x-2|解的个数是(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分),已知甲组数据的众数为124,乙组数据的平均数为甲组数据的中位数,则x,y的值分别为(  )
A.4,4B.5,4C.4,5D.5,5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正数x,y满足x+2y-2xy=0,那么2x+y的最小值是$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案