精英家教网 > 高中数学 > 题目详情
10.函数f(x)=x+$\frac{1}{ax}$在(-∞,-1)上单调递增,则实数a的取值范围是(-∞,0)∪[1,+∞).

分析 若函数f(x)=x+$\frac{1}{ax}$在(-∞,-1)上单调递增,则f′(x)=1-$\frac{1}{{ax}^{2}}$≥0在(-∞,-1)上恒成立,构造函数将问题转化为最值问题,可得答案.

解答 解:∵函数f(x)=x+$\frac{1}{ax}$在(-∞,-1)上单调递增,
∴f′(x)=1-$\frac{1}{{ax}^{2}}$≥0在(-∞,-1)上恒成立,
即$\frac{1}{a}$≤x2在(-∞,-1)上恒成立,
即$\frac{1}{a}$≤1,
解得:a∈(-∞,0)∪[1,+∞),
故答案为:(-∞,0)∪[1,+∞)

点评 本题考查的知识点是利用导数研究函数的单调性,函数恒成立问题,函数的最值及几何意义,分式不等式的解法,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC中,已知b2+c2=bc+a2,则角A的大小为60°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足$\left\{\begin{array}{l}x+2y-4≤0\\ x-y-1≤0\\ x≥1\end{array}$,则$\frac{y+2}{x+3}$的取值范围是[$\frac{1}{2}$,$\frac{7}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若直线l1:ax+2y-8=0与l2:x+2y+4=0平行,则a的值为(  )
A.-2B.1或2C.1D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,已知直线l过点A(0,4),交函数y=2x的图象于点C,A交x轴于点B,若$\overrightarrow{AC}$=$\frac{2}{3}$$\overrightarrow{CB}$,则点B的横坐标为3.16.(结果精确到0.01,参考数据lg2=0.3010,lg3=0.4771,)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设生产某种产品x件的费用为C(x)=900+20x+x2(万元),试确定使得平均单位成本最小时的x值,并给出最小平均成本.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=x(1+$\sqrt{1-{x}^{2}}$)的最大值是(  )
A.3$\sqrt{3}$B.$\sqrt{3}$C.$\frac{3\sqrt{3}}{2}$D.$\frac{3\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+2bx+c,函数f(x)在区间(0,1)内取极大值,在区间(1,2)内取极小值,则u=$\frac{b-2}{a-1}$的取值范围是$(\frac{1}{4},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{{\root{3}{x^2}}}{e^x}$在x∈[-2,2]上的极值点的位置有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案