如图,在C城周边已有两条公路l1,l2在点O处交汇.已知OC=(+)km,∠AOB=75°,∠AOC=45°,现规划在公路l1,l2上分别选择A,B两处为交汇点(异于点O)直接修建一条公路通过C城.设OA=x km,OB=y km.
(1)求y关于x的函数关系式并指出它的定义域;
(2)试确定点A,B的位置,使△OAB的面积最小.
科目:高中数学 来源: 题型:解答题
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=x2+10x(万元).当年产量不小于80千件时,C(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式.
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数f(x)=x2+(2a-1)x+1-2a.
(1)判断命题“对于任意的a∈R(R为实数集),方程f(x)=1必有实数根”的真假,并写出判断过程.
(2)若y=f(x)在区间(-1,0)及(0,)内各有一个零点,求实数a的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).
(1)若g(x)=m有零点,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某兴趣小组要测量电视塔AE的高度H(单位:m).如示意图,垂直放置的标杆BC的高度h=4 m,仰角∠ABE=α,∠ADE=β.
(1)该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m,试问d为多少时,α-β最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x).
(1)证明:当x≥0时,f(x)≤(x+c)2;
(2)若对满足题设条件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com